
Legalization Algorithm for Multiple-Row Height
Standard Cell Design

∗

Wing-Kai Chow, Chak-Wa Pui, Evangeline F. Y. Young
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, Hong Kong

{wkchow, cwpui, fyyoung}@cse.cuhk.edu.hk

ABSTRACT
Typical standard cell placement algorithms assume that all cells
are of the same height such that cells can be aligned along the
placement rows. However, modern standard cell designs are
getting more complicated and multiple-row height cell becomes
more common. With multiple-row height cells, placement of
cells are not independent among different rows. It turns out
that most of the commonly used detailed placement and le-
galization techniques cannot be extended easily to handle the
problem. We propose a novel algorithm in handling legaliza-
tion of placement involving multiple-row height cells. The algo-
rithm can efficiently legalize a local region of cells with various
heights, which is especially useful for local cell movement, cell
sizing, and buffer insertion. Experiments on the application of
the technique in detailed placement show that our approach
can effectively and efficiently legalize global placement results
and obtain significant improvement in the objective function.

Keywords
Detailed placement, legalization, multiple-row height cell, stan-
dard cell design

1. INTRODUCTION
With the increasing complexity in VLSI technology, stan-

dard cell design is a common approach for circuit design with
millions of logic gates. Standard cell library consists of pre-
designed circuit units for common logic components. These
basic units (cells) are placed on rows on the chip, powered by
rails of power circuitry. The cells are connected by chip-level
routing to perform the system functions. Standard cell library
helps designers by shortening the development time. Time is
saved by avoiding design circuit at transistor level, but focusing
on chip-level instead. Since standard cells are aligned on the
rows, they are designed to have fixed cell height. To increase
cell density and thus reduce chip area and cost, cell heights are
being reduced as much as possible. This can cause problems in
standard cell design since complex standard cells with small cell
height is hard to design due to serious routing congestion [1].
Therefore, it is increasingly popular to adopt multi-row height
standard cell design, where simple cells are designed as single-
row height, while complex cells are designed as double- or even

∗The work described in this paper was partially supported by
grants from the Research Grants Council (Ref. No.: 14209214)
and the Innovation and Technology Commission (Ref. No.:
IT3/068/14) of the Hong Kong Special Administrative Region,
China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’16, June 05-09, 2016, Austin, TX, USA

c© 2016 ACM. ISBN 978-1-4503-4236-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2897937.2898038

multiple-row height [1, 2]. Comparing to single-row height cell
structure, multi-row height cell structure can achieve better
layout efficiency and thus better performance.
However, with multi-row height cells, the legalization and de-

tailed placement problem is much more complicated. In orig-
inal single-row height cell problem, cell overlappings are inde-
pendent among rows. However, with multi-row height cells,
shifting a cell in one row may cause cell overlap in another row.
Therefore, placing and legalizing any single cell may need to
consider more than one row. So far, there is not much aca-
demic research on the topic of legalization and detailed place-
ment with multi-row height cells.
It turns out that the most common legalization and detailed

placement techniques cannot be modified easily to handle multi-
row height cells. The well-known legalization method, Aba-
cus [3], involves assignment of cells to rows. Cells inside a row
may be clustered and shifted to reduce the cost. However, with
multi-row height cells, shifting of cells in a row may produce
overlapping in another row. With the existing techniques, we
can handle multi-row height cells as macros. The work of [4]
supports legalization of mixed-size design. However, it is ac-
tually a two-step approach of handling legalization of macros
first and then the single-row height standard cells. For other
mixed-size placer like [5, 6] include an extension of a greedy le-
galization [7] for supporting mixed-size legalization. However,
the placed objects are not allowed to move for accommodating
other unplaced objects, which could result in high displacement
when the design density is high.
In terms of detailed placement, the well-known technique of

cell reordering enumerates all possible ordering of a set of con-
secutive cells and search for the one with the best objective
cost [8]. However, reordering of cells with multi-row height cells
in a row may induce cell overlapping in other rows. Another
common detailed placement technique proposed by [8] and [9]
involves solving a fixed order single row placement problem op-
timally. However, with multi-row height cells, overlap-free so-
lution in a single row may involves cell overlapping in the row
above and below the target row. Recently, Wu and Chu [10]
proposed a wirelength-driven double-row height cell placement.
However the work limits standard cell height of two and double-
row height cells are restricted to be placed on even rows. Re-
cent detailed placement technique proposed by [11] and [12]
involves a technique of instant legalization, i.e., for every cell
move, the detailed placer performs legalization such that all
intermediate placement solutions are legal. Such technique can
provide better control in solution quality and constraint satis-
faction. This instant legalization technique is also very useful
in other scenarios. For example, in gate sizing, we may want to
locally legalize the placement after cell size changes. In buffer
insertion, we may want to legalize the solution locally to re-
move overlapping induced by the newly inserted buffer. In this
paper, we propose an incremental legalization technique with
consideration of multi-row height cells.
The major contributions of our work include:

• Our work explores a new area of detailed placement with
multi-row height cells.

• We propose a novel and effective algorithm to locally le-

Figure 1: Power line layout on mutli-row height cell

galize a placement with multi-row height cells.

• The experimental results show the effectiveness of our
algorithm.

The rest of the paper is organized as follows: Section 2 gives
the formal formulation of the multi-row height cell legalization
problem. Section 3 provides the overview of our incremental
approach of legalization. Section 4 introduces the idea of our
proposed efficient algorithm to solve the problem. Section 5
describes the details of our implementation which leads to a
high algorithm performance. Section 6 shows the experimental
results and analysis. Section 7 concludes the paper.

2. PROBLEM FORMULATION
Given a global placement solution, legalization is a process of

moving cells to discrete legal positions and to remove all over-
laps. It is assumed that a global placement solution has good
distribution of cells. Legalization should preserve the place-
ment quality by doing minimal perturbation to the placement,
i.e., by minimizing the total cell displacements.

In practice, standard cells have power rail on the top or bot-
tom side, while ground rail is located on the other side. Power
and ground rails are routed horizontally between the rows.
Therefore, every cell must be vertically aligned to rows such
that it can be properly powered. Furthermore, standard cells
are designed such that the pins are aligned to the routing grids.
Therefore, standard cells must also be horizontally aligned to
predefined uniform placement sites, such that pins are aligned.

For each row, power is either at the top or bottom while the
ground is at the other end. Therefore, a single-row standard cell
should be placed with a correct vertical flipping such that the
power/ground position matches with that of the row. However,
for multi-row cells with even number of row height, both sides
of the cells are either power or ground, as shown in figure 1(a).
Therefore, cells with even row height can only be placed on
every other rows with proper power line alignment. On the
other hand, multi-row cells with an odd number of row height
can be placed on every row provided that the cell orientation
is correctly flipped, as shown in figure 1(b).

For each cell ci, the width and height are wc
i and hc

i respec-
tively, and the lower-left corner position is at (xc

i , y
c
i). For each

row ri, the width and height are wr
i and hr

i , and the lower-left
corner position is at (xr

i , y
r
i). We are also given a constant site

width Sitew and site height Siteh. All cell widths and row
widths are multiples of Sitew, while all cell heights are multi-
ples of Siteh, and all row heights equal Siteh.

We can now formally define the problem as follow:
In a multi-row height legalization problem, we are given a

placement solution P = {(x′
1, y

′
1), (x

′
2, y

′
2), · · · , (x

′
n, y

′
n)} of a

set of n movable cells C = {c1, c2, · · · , cn} on m rows R =
{r1, r2, · · · , rm} specified by a floorplan, the netlist and the cell
library, the objective is to assign each cell ci with a position
(xi, yi), such that the total cell displacement is minimized:

min

n∑
i=1

|x′
i − xi|+ |y′

i − yi|

while the following constraints are satisfied:

Figure 2: Units of Measurement

1. Cells are overlap-free , i.e.,

∀ci, cj ∈ C,

(xc
i + w

c
i ≤ x

c
j) ∨ (yc

i + h
c
i ≤ y

c
j)∨

(xc
j + w

c
j ≤ x

c
i) ∨ (yc

j + h
c
j ≤ y

c
i)

2. Cells are aligned to placement sites on rows, i.e.,

∀ci ∈ C, ∃rj ∈ R,

y
c
i = y

r
j ∧ x

c
i = x

r
j + αi · Sitew where αi ∈ {0, 1, 2, · · · }

3. Cells are completely contained inside one or multiple rows,
i.e.,

∀ci ∈ C, ∀h ∈ {0, 1, · · · ,
hc
i

Siteh
− 1}, ∃rj ∈ R,

y
c
i + h · Siteh = y

r
j ∧ x

c
i ≥ x

r
j ∧ x

c
i + w

c
i ≤ x

r
j + w

r
j

4. Cells with height of even multiples of site height must be
placed in alternate rows with matching power rail align-
ment, i.e.,

∀ci ∈ C s.t. hc
i = 2m× Siteh for some m = 0, 1, · · · ,

y
c
i ∈

⎧⎨
⎩
{yr

1 , y
r
3 , y

r
5 , · · · }

if the first row r1
matches power rail of ci

{yr
2 , y

r
4 , y

r
6 , · · · } otherwise

2.1 Preliminaries and Terminology

2.1.1 Units of Measurement
For simplicity, all locations and dimensions used in our algo-

rithm are measured in unit of placement site. For horizontal
dimension, the unit is the number of placement site width,
Sitew, while vertical dimension uses the unit of the number of
placement site height, Siteh. Cells’ and rows’ positions refer
to the coordinate of their lower-left corners. Figure 2(a) shows
the measurement in actual scale, while Figure 2(b) shows the
measurement in our implementation. However, when we mea-
sure cell displacement or wirelength, we will use the actual unit
in micron.

2.1.2 Segments
We differentiate between placement rows and segments. Row

is defined by the floorplan and placement sites on a row may
be blocked by macros or placement blockages. A segment is de-
fined as a continuous sequence of non-blocked placement sites.
Figure 2(a) shows the rows defined by the floorplan, while Fig-
ure 2(b) shows the corresponding segments defined in our al-
gorithm.
For each segment s, a list of cell references {cs1, c

s
2, · · · , c

s
m} is

maintained. Cells in the list are ordered by their x-coordinates.
An unplaced cell does not appear in any segment cell list, while
a placed cell appears in h segment cell lists, where h equal to
the height of the cell. For example, in Figure 2(b), segment3,1
has a cell list of {a}, and segment4,1 has a cell list of {a, b}.

2.1.3 Local Region
Given a rectangular window W defined by its lower-left cor-

ner’s coordinates, width and height as (xW , yW , wW , hW), we
can extract a localized placement problem within W . Cells not
completely inside W are initialized as non-local cells. For exam-
ple, a floorplan and a window in red dashed-line box are shown

Figure 3: Extraction of local region

in Figure 3(a). Cells a, d, j, k are initialized as non-local cells.
The placement rows in W are divided by non-local cells into
continuous segments. For each row in W , we will pick only one
continuous segment as local segment. If there are more than one
in a row, the one closest to the window center will be selected
as a local segment. A cell inside W is a local cell if and only if
it is contained completely within the local segments. Accord-
ing to this definition, there may be cells which are completely
inside W but are non-local, e.g., cell i and c in Figure 3(a).
In this example, only cells e, f and g are local cells and local
region (union of all local segments) is shown in Figure 3(b).

In the example shown in Figure 3, although the placement
site at the upper-left corner of the local region is not occupied,
it is not a local segment because the other one on the same
row is closer to the window center. Beside, although cell i is
contained completely in the window W , it is not contained in
any local segment, it is thus not included as local cell. Note
that as long as the window size is reasonable, the local region is
large enough to provide solution with high quality. Due to page
limit, the algorithm of local region extraction is not described.

3. ALGORITHM OVERVIEW
To solve the legalization problem defined in the previous sec-

tion, we propose a method as shown in Algorithm 1.

Algorithm 1 Legalization Algorithm

1: Unplaced = C
2: for each ci ∈ Unplaced do
3: result ← MLL(ci, (x

′
i, y

′
i))

4: if result = Success then
5: Remove ci from Unplaced
6: end if
7: end for
8: k ← 1
9: while Unplaced is not empty do
10: for each ci ∈ Unplaced do
11: result ← MLL(ci, (x

′
i +Randx(k), y

′
i +Randy(k))

12: if result = Success then
13: Remove ci from Unplaced
14: end if
15: end for
16: k ← k + 1
17: end while

At the beginning, all cells are set as unplaced (line 1). For
each cell ci in an arbitrary order, we will place the cell at the
nearest site-aligned and power-rail matching position from the
input position (x′

i, y
′
i). If the placement does not cause any

overlap with other cells, we will place it directly at the position.
Otherwise, we will trigger the Multi-row Local Legalization al-
gorithm (MLL) as follow:

The local legalization algorithm takes a target cell ct and
its target position (xc

t , y
c
t) as parameters. A Local Region W is

defined with the window’s lower-left corner at (xc
t−Rx, y

c
t−Ry),

its width of (2Rx + wc
t) and its height of (2Ry + hc

t), where
Rx and Ry are variables determining the window size (Rx =
30, Ry = 5 in our implementation). The algorithm seeks for a
legal placement for all the local cells inside W plus the target
cell ct, while the total displacement of every local cell from
its current position and the displacement of ct from its target
position (xc

t , y
c
t) is minimized. When a legal solution is not

found with the algorithm, it will abort the target position and
return without changing the placement. Otherwise, it will place
the cell and legalize the placement.

Figure 4: Overview of theMLL algorithm

In the first iteration (line 2–7), every cell ci is tried to be
placed at the input position (x′

i, y
′
i). MLL is called when legal-

ization is required (line 3). After the first iteration, when there
is still any unplaced cell, we will repeat the placement of each
unplaced cell celli with another position (x′

i + Randx(k), y
′
i +

Randy(k)) (line 11), where k is the current iteration number,
Randx(k) is a random integer in the range of [−Rx ·(k−1), Rx ·
(k−1)] and Randy(k) is another random integer in the range of
[−Ry · (k−1), Ry · (k−1)]. The placement iteration is repeated
until all the cells are placed (line 9–17).

As the core of our legalization is the MLL algorithm. In the
remaining of this paper, we will focus on the description of the
algorithm.

4. MULTI-ROW LOCAL LEGALIZATION
The Multi-row Local Legalization (MLL) algorithm works on

a local region W with legally placed local cells CW and an un-
placed target cell ct. The algorithm finds a legal placement so-
lution while minimizing the total displacement of the local cells
and the target cell. The overview of the MLL algorithm is il-
lustrated in Figure 4. Figure 4(a) shows the original placement
and the red dashed-line box shows the window from which we
can extract the local region. Figure 4(b) shows the extracted
local region. Our MLL algorithm will then give a legal solution
by inserting the target cell and legalize it within the local re-
gion, as shown in Figure 4(c). The resulting placement is then
mapped back to the original floorplan and the result is shown
in Figure 4(d).
Due to the power line alignment constraint, shifting a placed

cell vertically to a compatible row will bring a relatively large
displacement or will involve cell flipping, especially for even
row-height cells. Therefore, once a cell is placed in a row with
matching power line alignment, the y-coordinate of the cell is
fixed, while it is still free to shift along the x-direction for plac-
ing other cells. Furthermore, to maintain the global placement
solution as much as possible, the algorithm does not change the
relative cell order in each segment.
With fixed local cells’ row and their relative orders in a row,

inserting a target cell with height hc
t implies that we need to

place the target cell in some gaps between the cells in hc
t con-

secutive segments. For example, given a local region and a set
of local cells CW = {a, b, c, d, e} as in Figure 5(a), and assume
that we want to insert a 3 × 2 cell to the local region at a
position as shown by the red dash-lined box.
To insert this triple-row cell, we need to find out three gaps

between cells from three vertically consecutive segments. We
represent gaps as (r, i, j), where r is the segment which the
gap is lying on, i is the cell on its left (or L when its left side
is the segment boundary), and j is the cell on its right (or R
when its right side is the segment boundary). For example, in
Figure 5(b), we choose to insert the target cell t at three gaps:
{(2, c, d), (3, c, R), (4, b, R)}. The resulting legal placement for
these gaps selection with minimal displacement is shown in
Figure 5(b). The resulting total minimal displacement is the
sum of the cells’ displacement from that in (a) plus the distance
of the cell t from the its target position, which is 8 · Sitew.
Another option is to insert the target cell in another three

gaps: {(1, e, c), (2, L, c), (3, a, c)} as shown in Figure 5(c), the
resulting displacement is 3 · Sitew + Siteh.

We refer a combination of gaps for inserting the target cell as
insertion point. The previous two examples show two feasible

Figure 5: Definition of insertion point

Figure 6: Leftmost/Rightmost placement

insertion points. Figure 5(d) shows the optimal insertion point
{(2, L, c), (3, a, c), (4, a, b)} of this example, which results in the
minimal total dispalcement of 2 ·Sitew. However, not all inser-
tion points can be used, Figure 5(e) and (f) show two examples
of infeasible insertion points. There are a finite set of insertion
points in a given local region. Our MLL algorithm composes
of three main ideas: (1) A fast scanline algorithm of enumer-
ating all feasible insertion points (Section 5.1). (2) Given any
valid insertion point, a fast evaluation method is proposed to
determine the exact target cell position that can minimize the
total displacement (Section 5.2). (3) Given any valid insertion
point and the exact target cell position, we can produce a legal
placement with minimal displacement (Section 5.3).

5. IMPLEMENTATION DETAILS

5.1 Insertion Point Enumeration

5.1.1 Insertion Interval
In Section 4, we defined insertion point for a target cell with

height h as a combination of gaps between cells from h con-
secutive segments. In this section, we define a gap formally
as insertion interval. The definition of insertion interval Iri,j is
extended from the gap’s definition in the previous section with
additional data as Iri,j = (r, i, j, xi, xj), where r is the segment
which the gap is lying on, i/j is the cell on its left/right or L/R
when its left/right side is the segment boundary, xi/xj is the
leftmost/rightmost possible x-coordinate for the target cell in
the gap on segment r.

To find the values of xi and xj , we first find two special place-
ments of the local cells for a local region referred as leftmost
and rightmost placement. Leftmost/Rightmost placement is
a legal placement solution of the local region with the local
cells placed at its smallest/largest possible x-coordinate with
the current cell order on each segment. Figure 6 gives an ex-
ample of the leftmost and rightmost placement of a given place-
ment of a local region. We refer a cell ci’s x-coordinates in its
leftmost and rightmost placement as xL

i and xR
i respectively.

With the leftmost and rightmost placement solutions, we can
find each insertion interval as:⎧⎨

⎩
(r, i, j, xL

i + wc
i , x

R
j − wc

t) (a) or

(r, L, j, xs
r, x

R
j − wc

t) (b) or

(r, i, R, xL
i + wc

i , x
s
r + ws

r − wc
t) (c)

where wc
i is the width of cell i, wc

t is the width of the target

Figure 7: Definition of insertion interval

Figure 8: Example of invalid insertion point

cell, xs
r is the x-coordinate of the segment r, ws

r is the width
of the segment r, (a) is the case when the gap is between cell
i and j; (b) is the case when the gap is between the segment
boundary and cell j; (c) is the case when the gap is between cell
i and the segment boundary. The three cases are illustrated in
Figure 7(a), (b), and (c) respectively.
The length of an interval is calculated as xj − xi. There

are three possible cases of interval length as shown in Figure 7.
Figure 7(d) shows an interval with positive length, which means
that the target cell has flexibility of choosing its position when
it is inserted in the gap. Figure 7(e) shows an interval with
length equals 0, which means that the target cell’s position is
determined by the interval’s endpoint. Figure 7(f) shows the
case with negative length value, which means that there is no
legal placement with the target cell in the gap. In such case, it
is safe to discard the insertion interval.

5.1.2 Valid Insertion Point
After setting up all possible insertion intervals, the objective

of Insertion Point Enumeration is to find a set of ht intervals
from ht consecutive segments, which we can find a common
x-coordinate xt for all the intervals. In other words, we find a
set of intervals with a common cutline. When all local cells are
with single row height, every interval set with a common cutline
form a valid insertion point. However, when there exists multi-
row height local cells, intervals on the left side of a multi-row
cell cannot form insertion point with another interval on the
right side of the multi-row cell. Figure 8 shows such situation.
Figure 8(a) shows two segments with a multi-row cell a and a
target cell t to be inserted. In Figure 8(b), the gaps (1, a, R)
and (2, L, a) are on different sides of the multi-row cell a and
thus they do not form a valid insertion point although they
have a common cutline.

5.1.3 Enumeration of all Valid Insertion Points
To enumerate all valid insertion points, a naive implementa-

tion is to find all permutation of the intervals and screen out
the invalid sets. However, it is computationally impractical.
We propose the following algorithm.
A set of queues Qr

s are defined for storing intervals, where r
and s are labels of the pair of segments that can possibly form
insertion point. Since the target cell height is ht, the label r
and s of a queue Qr

s should be such that (1) 1 ≤ r �= s ≤ hW ,
and (2) |r − s| ≤ ht − 1

For the example in Figure 5, we have the following queues
defined:

Q
1
2, Q

1
3, Q

2
1, Q

2
3, Q

2
4, Q

3
1, Q

3
2, Q

3
4, Q

4
2, Q

4
3 (1)

We will enumerate all the intervals Iri,j = (r, i, j, xi, xj) inside
the local region. Note that there will be at most (|CW |+1)×hW

of such intervals where |CW | is the number of local cells in win-
dow W and hW is the height of W . Each interval will be
associated with two endpoints xi and xj . We are going to sort
all these endpoints in a non-decreasing order and process the
intervals according to this sorted list, enqueuing them into the
queues defined above and forming insertion point simultane-
ously. Suppose now we are working on a point xi in this list
which is the left endpoint of an interval Iai,j . First, we will

Figure 9: Evaluation of a insertion point

generate the insertion points involving Iai,j as:

min(hW−ht+1,a)⋃
t=max(1,a−ht+1)

{Iai,j} ×

t+ht−1∏
s=t,s �=a

Q
a
s (2)

For example, assume we have queues as in (1), when the target
cell height is 3 and the current interval is I2i,j from segment 2,
the set of insertion points to be generated when we process up
to the point xi in the sorted list is:

{Q2
1 × {I2i,j} ×Q

2
3} ∪ {{I2i,j} ×Q

2
3 ×Q

2
4}

However, due to the constraint that intervals on one side of a
multi-row height cell cannot form insertion point with the in-
tervals on the other side, when the left cell i of an interval Iai,j is
a multi-row cell occupying a set of segment S = {s1, s2, · · · shi

},
we simply clear the queue Qa

s with s ∈ S. Furthermore, to con-
sider power line alignment, we can simply discard the insertion
point which does not satisfy the constraint. The checking is
simple and trivial and we will not discuss further on this due
to space limit.

After finishing the enumeration of insertion points involving
the current interval Iai,j , the interval is pushed to all queues
Qr

s with s = a. On the other hand, when the point being
processed is a right endpoint of an interval Iai,j , we pop the
interval Iai,j from all queues Qr

s with s = a. After scanning
all the interval endpoints, we have enumerated all valid inser-
tion points. In the algorithm, all insertion points are enumer-
ated without duplication. Therefore the time complexity is
O(((|CW |+ 1)× hW)h) = O(|CW |h), where h is the target cell
height, which is usually a very small integer.

5.2 Insertion Point Evaluation
Given a valid insertion point, the relative positions of the

cells in the related segments are known. However, the target
cell have flexibility for its exact placement position and each
position may result in different total cell displacement. For
every local cell, the displacement of the cell is either zero or
linear to the target cell’s position with a slope of 1 if the cell
is on the right of the target cell, or -1 if the cell is on the left
of the target cell, depending on the position of the target cell.
Figure 9(a) shows an example of the original placement and the
red dashed-line box showing the target position. Figure 9(b)
shows the resulting legal placement with a given insertion point.
Figure 9(c) shows the curves of displacement of cell c, d, e
against the target cell t’s position. Figure 9(d) shows the total
displacement by summing up every displacement curve. For
each cell ci on the left of the target cell, we call the smallest x-
position of the target cell that does not cause any displacement
to cell ci the critical position for cell ci and denote it as xa

i .
Similarly, for cell cj on the right of the target cell, we call the
largest x-position of the target cell that does not cause any
displacement to cell cj as the critical position for cell cj and
denote it as xb

j . We can generalize all curves as the following
function:

di(xt) =

⎧⎨
⎩
xa
i − xc

t , xc
t < xa

i

0, xa
i ≤ xc

t ≤ xb
i

xc
t − xb

i , xc
t > xb

i

(3)

where for the cells on the left of the target cell, xb
i = ∞; for

the cells on the right of the target cell, xa
i = −∞; and for the

target cell, xa
i = xb

i = x′
t. The displacement curve of each cell

has the shape shown in Figure 9(e).
It is not hard to show that the optimal position to place the

target cell to minimize the total displacement is the median of
the set of critical positions {xa

i , x
b
i |ci ∈ CW ∪ {ct}}, where CW

is the set of local cells. With the optimal position of the target
cell, we can calculate the resulting total displacement as the
sum of equation (3) for each local cell and the target cell. It
will be used as the cost of the insertion point. The remaining
problem is how to find the values of the critical positions. The
values of all critical positions can be found in O(|CW |) time.
Due to page limit, the method of finding all critical positions
is not discussed in this paper.
For efficiency, we used an approximated calculation of the

optimal position for the target cell considering its neighboring
cells only. For a multi-row cell with height of ht, there are at
most 2×ht neighbors. The critical positions for the neighboring
cells can be found easily. For the left neighboring cell ci, its
critical position xa

i due to the target cell is xc
i + wi. For the

right neighboring cell cj , its critical position is xc
j − wt. The

calculation can be done in O(ht), where ht is so small that it
can be assumed to be a constant.

5.3 Legal Placement Realization
With the methods proposed in the last section, the inser-

tion point and the target cell’s position with the minimal dis-
placement are found. In this section, we propose an efficient
algorithm to realize such legal placement with minimal total
displacement as follow:

Algorithm 2 Legal Placement Realization

1: cell ct is placed at (xt, yt)
2: QL = {ct}
3: while QL is not empty do
4: ci = QL.pop()
5: for each left neighboring cell cL of ci do
6: if cL overlaps ci then
7: xL ← xi − wL

8: QL.push(xL)
9: end if
10: end for
11: end while
12: QR = {ct}
13: while QR is not empty do
14: ci = QR.pop()
15: for each right neighboring cell cR of ci do
16: if cR overlaps ci then
17: xR ← xi + wi

18: QR.push(xR)
19: end if
20: end for
21: end while

At the beginning, the target cell ct is placed at the position
(xt, yt) which we have found in Section 5.2 (line 1). A queue QL

is initialized with ct (line 2). We repeat the following procedure
until QL becomes empty. Cell ci is popped from QL (line 4). It
is checked against every ci’s left neighboring cells cL to see if it
overlaps with ci (line 5–6). If it does, we shift the cell cL to the
left with minimal distance such that it does not overlap with ci
(line 7). After the shifting, we push cL into QR (line 8). The
legalization on the left side is finished when QL is empty. A
similar procedure is applied on the right side of the target cell
(line 12–21). In the algorithm, every cell is processed at most
once, therefore the time complexity is O(|CW |), where CW is
the set of local cells in the window W .

6. EXPERIMENTAL RESULTS
To validate our proposed method, the algorithm is imple-

mented in C++. The experiments were performed on a 64-
bit Linux machine with Intel Xeon 3.4GHz CPU and 32GB
memory, using the benchmarks provided by ISPD2015 Detailed

Table 1: Experimental Resuts
Power Line Aligned Power Line Not Aligned

GP Disp. (sites) ΔHPWL Runtime (s) Disp. (sites) ΔHPWL Runtime (s)
Benchmarks #S. Cell #D. Cell Density HPWL(m) ILP Ours ILP Ours ILP Ours ILP Ours ILP Ours ILP Ours

des perf 1 103842 8802 0.91 1.43 2.13 3.32 2.61% 2.85% 4098.7 7.2 1.79 1.84 2.59% 1.30% 4478.9 6.5
des perf a 99775 8513 0.43 2.57 0.66 0.96 0.11% 0.28% 193.8 2.6 0.26 0.31 0.03% 0.04% 151.4 2.4
des perf b 103842 8802 0.50 2.13 0.62 0.85 0.12% 0.31% 250.8 2.4 0.24 0.32 0.02% 0.03% 194.7 2.2
edit dist a 121913 5500 0.46 5.25 0.45 0.47 0.09% 0.10% 206.0 1.9 0.22 0.24 0.03% 0.03% 173.0 1.8
fft 1 30297 1984 0.84 0.46 1.58 1.81 2.25% 1.66% 776.8 1.1 1.26 1.13 1.77% 0.66% 818.1 0.9
fft 2 30297 1984 0.50 0.46 0.66 0.86 0.55% 0.87% 72.7 0.4 0.32 0.33 0.17% 0.11% 59.3 0.4
fft a 28718 1907 0.25 0.75 0.60 0.64 0.32% 0.33% 38.2 0.3 0.32 0.35 0.12% 0.11% 30.7 0.2
fft b 28718 1907 0.28 0.95 0.73 0.80 0.32% 0.33% 61.9 0.4 0.42 0.51 0.13% 0.13% 52.3 0.4
matrix mult 1 152427 2898 0.80 2.39 0.49 0.53 0.36% 0.28% 967.4 3.9 0.37 0.40 0.23% 0.13% 709.4 3.8
matrix mult 2 152427 2898 0.79 2.59 0.45 0.49 0.30% 0.22% 825.0 4.0 0.34 0.37 0.18% 0.09% 640.5 4.1
matrix mult a 146837 2813 0.42 3.77 0.27 0.33 0.09% 0.14% 150.7 1.6 0.18 0.19 0.05% 0.05% 126.1 1.5
matrix mult b 143695 2740 0.31 3.43 0.25 0.30 0.09% 0.13% 127.8 1.3 0.16 0.17 0.05% 0.05% 108.4 1.2
matrix mult c 143695 2740 0.31 3.29 0.27 0.29 0.11% 0.11% 139.0 1.4 0.18 0.20 0.06% 0.05% 122.8 1.3
pci bridge32 a 26268 3249 0.38 0.46 0.88 0.95 0.52% 0.58% 49.4 0.3 0.30 0.32 0.11% 0.11% 35.7 0.3
pci bridge32 b 25734 3180 0.14 0.98 0.95 0.96 0.12% 0.13% 15.3 0.2 0.24 0.25 0.03% 0.03% 9.5 0.1
superblue11 a 861314 64302 0.43 42.94 1.85 1.94 0.15% 0.15% 3073.6 23.4 1.49 1.54 0.12% 0.12% 2673.5 21.7
superblue12 1172586 114362 0.45 39.23 1.45 1.63 0.18% 0.22% 5079.0 106.5 1.02 1.07 0.12% 0.12% 4462.4 95.9
superblue14 564769 47474 0.56 27.98 2.56 2.62 0.22% 0.22% 3360.6 17.1 2.18 2.20 0.20% 0.19% 3141.1 15.8
superblue16 a 625419 55031 0.48 31.35 1.61 1.73 0.10% 0.12% 2470.7 21.7 1.20 1.26 0.08% 0.08% 2221.0 19.5
superblue19 478109 27988 0.52 20.76 1.52 1.60 0.14% 0.14% 1848.8 10.9 1.24 1.28 0.11% 0.11% 1717.4 10.1

Avg. 1.00 1.16 0.44% 0.46% 1190.3 10.4 0.69 0.71 0.31% 0.18% 1096.3 9.5
N. Avg. 0.87 1.00 0.95 1.00 185.0 1.0 0.93 1.00 1.74 1.00 186.5 1.0

Routing-Driven Placement Contest [13]. Since the cell library
provided by the contest is single-row height standard cell li-
brary, we modified the benchmarks by doubling all sequential
cells’ height and halving the cells’ width. This reflects the
fact that sequential cells are usually the cells with complicated
layout and being benefited with multi-row design. However,
some of the benchmarks provided by the contest do not pro-
vide enough information to identify the sequential cells. In this
case, we randomly selected 10% of the cells and converted them
to double height and half width. Such modification maintains
the total cell area and it ensures that the floorplan can contain
all the cells. Table 1 shows the information of the benchmarks.
In the table, #S. Cell denotes total number of single-row height
cells, #D. Cell denotes total number of double-row height cells,
Density is the design density, GP HPWL is the wirelength in
unit of meter after global placement obtained from the global
placer provided by one of the top-3 winners of the contest [13].

To evaluate our legalization quality, we also formulated the
local legalization problem as an ILP problem according to the
objective function and constraints described in Section 2. In
the ILP experiment, the MLL algorithm is replaced by a pro-
cedure of constructing and solving the ILP problem with an
open-source ILP solver, lpsolve. We formulated the local legal-
ization to be exactly the same problem solved by the MLL al-
gorithm, which gives the optimal solution to our problem. Due
to page limit, the detailed ILP formulation is not included in
this paper. It is worth noting that although the ILP approach
gives an optimal solution to the local legalization problem, the
optimal solutions to the local sub-problems do not necessarily
lead to the final global optimal solution. It is the reason why
our approach performs better than the ILP approach for the
fft 1 benchmark.
Table 1 shows the result of the legalization in three aspects:

(1) average cell displacement measured in number of place-
ment site width, (2) HPWL wirelength change comparing with
the input global placement, (3) algorithm runtime in second.
Average and normalized average values are shown in the last
two rows respectively. Consider the complexity in legalizing
a placement with multiple-row height cells, our algorithm can
complete the legalization process on an unaligned and over-
lapping global placement in a very short time. For the small
benchmarks, it took a few seconds for most of the benchmarks,
while the largest benchmark with over million of cells took less
than 2 minutes. On the other hand, the ILP formulation of
the problem can be solved with 13% better in displacement on
average, but the runtime is 185× higher than our approach.
Furthermore, from the resulting total wirelength change, we
can see that the impact of the legalization on the wirelength is
very small (<0.5% average). The quality loss in terms of dis-
placement in our algorithm comparing to the ILP approach is
marginal. It shows that the approximated evaluation of inser-
tion points is accurate enough to choose the near-optimal place
for inserting the target cell.

Furthermore, we did another set of experiments on relaxing
the constraint of power line alignment, by assuming every cell
can be placed on any row. The experiment shows the impact
on cell displacement and the total wirelength. Since double-
row height cells must be placed in alternate rows, displace-
ment caused by such requirement is significant. By relaxing
the power line alignment constraint, the average cell displace-
ment with ILP and our algorithm are 38% and 42% lower, and
the wirelength change are 45% and 58% better with ILP and
our approach respectively.

7. CONCLUSION
In this paper, we explore a new area of legalization involving

multi-row height standard cells. With the ILP formulation, we
can obtain high quality solutions, while with our novel idea of
interval enumeration and evaluation to find a valid legalization
solution, we can solve the problem much more efficiently.

8. REFERENCES
[1] S.-H. Baek, H.-Y. Kim, Y.-K. Lee, D.-Y. Jin, S.-C. Park and

J.-D. Cho, “Ultra High Density Standard Cell Library Using
Multi-Height Cell Structure,” in Proc. SPIE, 2008

[2] T. R. Gheewala, M. J. Colwell, H. H. Yang, D. G. Breid,
“Dual-height Cell with Variable Width Power Rail
Architecture,” in US Patent US6838713, 2005

[3] P. Spindler, U. Schlichtmann, F. M. Johannes, “Abacus: Fast
Legalization of Standard Cell Circuits with Minimal
Movement,” in Proc. ISPD, 2008

[4] J. Cong, X. Min, “A Robust Mixed-Size Legalization and
Detailed Placement Algorithm,”, in IEEE TCAD:27(8), 2008

[5] A. Khatkhate, C. Li, A. R. Agnihotri, M. C. Yildiz, S. Ono,
C.-K. Koh, P. H. Madden, “Recursive Bisection Based Mixed
Block Placement,”, in Proc. ISPD, 2004

[6] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze and M. Xie,
“mPL6: Enhanced Multilevel Mixed-Size Placement,” in Proc.
ISPD, 2006

[7] D. Hill, “Method and System for High Speed Detailed
Placement of Cells Within Integrated Circuit Designs,” in US
Patent US6370673, 2002

[8] P. Min, N. Viswanathan, C. Chu, “An Efficient and Effective
Detailed Placement Algorithm,” in Proc. ICCAD, 2005

[9] A. B. Kahng, P. Tucker and A. Zelikovsky, “Optimization of
Linear Placements for Wirelength Minimization with Free
Sites,” in Proc. ASPDAC, 1999

[10] G. Wu and C. Chu, “Detailed Placement Algorithm for VLSI
Design with Double-Row Height Standard Cells,” in IEEE
TCAD:35, 2016

[11] W.-K. Chow, J. Kuang, X. He, W. Cai and E. F. Y. Young,
“Cell Density-driven Detailed Placement with Displacement
Constraint,” in Proc. ISPD, 2014

[12] S. Popovych, H.-H. Lai, C.-M. Wang, Y.-L. Li, W.-H. Liu,
T.-C. Wang, “Density-aware detailed placement with instant
legalization,” in Proc. DAC, 2014

[13] I. S. Bustany, D. Chinnery, J. R. Shinnerl and V. Tutsi, “ISPD
2015 Benchmarks with Fence Regions and Routing Blockages
for Detailed-Routing-Driven Placement,” in Proc. ISPD, 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

