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Abstract—Many competitive global routers adopt the technique of
compressing the 3D routing space into 2D in order to handle today’s
massive circuit scales. It has been shown as an effective way to shorten
the routing time, however, quality will inevitably be sacrificed to
different extents. In this paper, we propose two routing techniques that
directly operate on the 3D routing space and can maximally utilize the
3D structure of a grid graph. The first technique is called 3D pattern
routing, by which we combine pattern routing and layer assignment,
and we are able to produce optimal solutions with respect to the
patterns under consideration in terms of a cost function in wire length
and routability. The second technique is called multi-level 3D maze
routing. Two levels of maze routing with different cost functions and
objectives are designed to maximize the routability and to search for
the minimum cost path efficiently. Besides, we also designed a cost
function that is sensitive to resources changes and a post-processing
technique called patching that gives the detailed router more flexibility
in escaping congested regions. Finally, the experimental results show
that our global router outperforms all the contestants in the ICCAD’19
global routing contest.

I. INTRODUCTION

Due to the complexity of the routing problem in the VLSI
domain, it has been divided into two sub-problems - global routing
and detailed routing. In global routing, the 3D routing region is
compressed into a 3D grid graph, of which each edge represents
multiple tracks or multiple vias. The capacities of the edges are the
resources that a global router can make use of, or in another word,
the number of nets that can go through the edge without causing
overflow. Conventionally, a global router will produce a path for
each net to connect all its pins without overflow, while minimizing
the total wire length. The ICCAD’19 global routing contest [1]
has introduced a new objective that a global router is required
to produce a set of connected rectangular route guides, instead
of a single path, which makes the task even more complex and
challenging. To better bridge the gap between global routing and
detailed routing, the state-of-the-art detailed router, Dr. CU [2]-[4]
was adopted to use the generated route guides to perform detailed
routing to evaluate the quality of the global router.

A common strategy of doing 3D global routing, as adopted
by NCTU-GR 2.0 [5], NTHU-Route 2.0 [6], NTUgr [7] and
FastRoute 4.0 [8], is to first compress the 3D grid graph into
a 2D grid graph and perform 2D global routing. The obtained
overflow-free 2D global routing solution is then projected back into
the 3D space by layer assignment. This strategy has been shown by
many high performance routers to be good at balancing runtime and
routing quality. During the 2D global routing, routers often resort
to pattern routing and/or monotonic routing [9] first to quickly
generate an initial routing solution. Nets that are hard to route will
then be handled by maze routing and may go through multiple
iterations of rip-up and reroute. Various kinds of history costs are
devised to enable the routers to avoid routing through historically
congested regions. After all nets are routed, the segments of the
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2D paths are assigned to different layers by a dynamic programming
based layer assignment.

Another less common but powerful strategy is to directly route
the nets in a 3D grid graph. For example, FGR [10] applies maze
routing directly in the 3D routing space with a cost scheme based
on discrete Lagrange multipliers, and GRIP [11] utilizes integer
linear programming to select a good route for each net. These two
approaches have exhibited good quality, but take prohibitive long
time to finish due to the large solution space. On the other hand,
MGR [12] adopts a multi-level technique, in which the grid graph
is coarsened so as to perform 3D maze routing in a smaller space.
Their method is demonstrated to achieve competitive routing quality
within reasonable runtime.

In this work, we propose a detailed-routability-driven 3D global
router with probabilistic resource model. The proposed router
utilizes a probability-based cost scheme, and routes the nets directly
in the 3D space with two main phases, 3D pattern routing and
multi-level 3D maze routing. In 3D pattern routing, the nets are
broken down into two-pin nets, and a dynamic programming
based algorithm will route the two pin nets sequentially using L-
shape patterns and stacking vias at the turns. In the multi-level
3D maze routing phase, the grid graph is coarsened to shrink the
routing space, and maze routing is first performed in the coarsened
space with an objective to find a routing region with the highest
routability. A fine-grained maze routing will then search for a
lowest cost path within the region. Besides, we also propose a new
technique called patching to add some stand-alone route guides
or patches onto the routed path to further improve the detailed
routability. Note that, the source code of this work is released on
Github'.

Our main contributions in this work include:

1) A sophisticated probability-based cost scheme minimizing the
possibility of overflow after detailed routing.

2) An optimal 3D pattern routing technique that combines
2D pattern routing and layer assignment, and is able to route
a majority of the nets without overflow, even if only L-shapes
are used.

3) A multi-level maze routing utilizes two levels of routing -
a coarsened level that searches for a region with the best
routability, and a finer level that searches for a lowest cost
solution within the region.

4) A patching technique that adds useful route guides to further
improve the detailed routability.

The rest of the paper is organized as follows: Section II in-
troduces the problem formulation, evaluation metrics and termi-
nologies. Our proposed algorithm will be discussed in Section III.

Thttps://github.com/cuhk-eda/cu-gr
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Section IV presents the experiments and results. Finally, Section V
will give the conclusion.

II. PRELIMINARY
A. Problem Formulation

In traditional global routing problem, the 3D routing region is
represented by a set of global routing cells (G-cells) obtained by a
set of evenly distributed horizontal and vertical grid lines. A grid
graph G(V, E) can then be defined by treating each G-cell as a
vertex (v € V) and creating an edge (e € E) between every two
adjacent G-cells. We call the edge between two G-cells on the
same layer wire edge, and the capacity of a wire edge is equal
to the number of tracks that can go through the edge. The edge
between two G-cells with the same 2D coordinates but on different
layers is called via edge, and its capacity is put as infinity by many
2D routers (but not in this work).

Traditional global routing problem can be defined as, given a grid
graph and a set of nets to be routed, find a path for each net such
that all the pins of a net are connected without overflow and the
overall wire length is minimized. However, in the ICCAD’19 global
routing contest, the problem is formulated in a slightly different
way. Rather than merely path finding, the global routers are required
to produce a set of connected rectangle guides, each containing an
integral number of G-cells, so that the detailed router can find a
path within the guides to connect all pins of each net and minimize
a give cost function.

B. Evaluation Metrics

In the past, the quality of a global routing algorithm is usually
measured by the total wire length, the number of vias used and
the number of overflows on the global routing edges. Although
this evaluation method is fast and straightforward, it cannot reflect
the detailed routability of the solution accurately. The discrepancy
between the global routing solution evaluation and the detailed
routing performance is large in many cases. In this work, we
adopted the same evaluation method in the ICCAD’19 global
routing contest. The output of the global router is a set of connected
rectangular route guides which will be fed into an academic detailed
router called Dr.CU, and the score is calculated based purely on
the quality of the detailed routing solution according to the metrics
in Table L

Metric Weight
length of wire 0.5
num of vias 4
length of wrong-way wire 1
num of off-track vias 1
length of off-track wires 0.5
length of out-of-guide wires 1
num of out-of-guide vias 1
num of min-area violations 500
num of spacing violations 500
num of short violations 500
short metal area / metal2 pitch 500

TABLE I: Evaluation Metrics for Detailed Routed Solution.

C. Terminologies
Our algorithm is designed based on three major concepts -

capacity, demand and resource, all of which can be used to
describe a wire edge or a GCell. For example, we have both the

capacity of an edge and the capacity of a G-cell. Since all the
following discussion will revolve around these three concepts, a
brief explanation for each is given below:

1) Capacity: The capacity of a wire edge e(u,v) denoted by
c(u,v) is the number of tracks going through that edge, which is
also roughly the maximum number of nets that can utilize the edge.
The capacity of a G-cell u, c(u), is then defined as the average
capacity of its two abutting wire edges.

2) Demand: The demand of an edge, d(u,v), is the part of the
capacity that is already used by the routed nets. It is the sum of two
parts - demand by wires and demand by vias. The demand by wires
is simply the number of wires going through the edge, while the
demand by vias is an estimated number of tracks affected by the
vias in the edge region. For instance, the demand of edge e(u,v)
is calculated using the the first equation in Equation (1a),

via(u) + via(v)
I S— (1a)

d(v) = wire(u, v) —52— wire(v, w) +1.5x /oia(), (1b)

d(u,v) = wire(u,v) + 1.5 X

where wire(u,v) is the number of wires going through the edge
and vias(u) is the number of vias that have metals inside G-cell
u. Note that a stacking via that enters a G-cell from below (above)
and exit from above (below) is counted as two.

The demand of a G-cell, d(u), is defined similarly. It is also the
sum of the demand by wires and the demand by vias. However, the
demand by wires is replaced by the average demand by wires of
its two abutting edges, and the demand by vias only considers the
vias in the G-cell, as shown in Equation (1b). Note that v and w
are the two G-cells adjacent to v in the preferred routing direction.

3) Resource: The resource of an edge or a G-cell is the part of
the capacity that can still be utilized by the nets to be routed. Its
relationship with the capacity and demand is shown in Equation (2),
in which the resource of an edge e(u,v) is denoted as r(u, v) and
the resource of a G-cell u is denoted as r(u).

r(u,v) = c(u,v) — d(u,v) (2a)
r(u) = c(u) — d(u) (2b)

Neither capacity nor demand can well describe the degree of
congestion, but the remaining resource will be a good indicator
of congestion and how big the capacity margin is.

III. PROPOSED ALGORITHM

A. Overview

Figure 1 presents the overall flow of the proposed algorithm,
which can be divided into three parts: initial routing, multi-level
maze routing and route guide generation. Note that, both intial
routing and mutli-level maze routing operate in the 3D space.

B. Cost Scheme

Our carefully crafted cost scheme, taking wire length, possibility
of overflow and ability of detailed router to solve overflow into
consideration, is capable of minimizing wire length and via number,
while avoiding overflow and reserving enough capacity for later use.
To discuss the proposed cost scheme, note that a path of a net is
formed by a set P of wire edges and vias, and the total cost of the
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Fig. 1: Overall Flow of the Proposed Algorithm.

path will be the sum of the costs of all those edges as computed
by Equation (3).

Z costw (u,v) + Z

e(u,v)EP via(u,u’)EP

cost(P) = costy (u,u'), 3)
where cost., (u,v) is the cost of a wire edge and cost, (u,u’) is
the cost of a via edge. The wire edge cost is comprised of two parts

- wire length cost and congestion cost, and is computed using the
formulae in Equation (4),

costw (u,v) = wi(u,v) + eo(u,v) x lg(u,v), (4a)
d(u,v)
c(u,v)
lg(u,v) = (1.0 + exp(slope x r(u,v))) " (4c)

eo(u,v) = wl(u,v) X X uoc, (4b)

wl(u,v) is the wire length of the wire edge (which is also its
wire length cost, since the coefficient for wire length cost is one).
The product of eo(u,v) and lg(u,v) forms the congestion cost,
where eo(u,v) is the expected overflow cost and lg(u,v) is a
logistic function of 7 (u, v). The expected overflow cost is calculated
by multiplying the wire length of the edge being considered by
the possibility of overflow, d(u,v)/c(u,v), and the unit length
overflow cost uoc (a given constant). Note that the possibility of
overflow, computed as the ratio between demand and capacity, is
accurate if the detailed router adopts the simplest strategy of picking
a track randomly to route. However, most well designed detailed
routers will do much better than random selection. To handle this,
we use a logistic function to model the ability of a detailed router
to avoid overflow. The variable slope of the logistic function is an
adjustable parameter that determines the global router’s sensitivity
to overflow. The formation of the congestion cost of a wire edge
is illustrated in Figure 2. When the resources are abundant, there
is almost no congestion cost, but the cost will increase rapidly as
the resources are being used up and will keep increasing almost
linearly after all the resources are used. This is because when the
resources are used up, the expected overflow cost will dominate the
congestion cost.

Many global routers ignore the impact of vias before the layer
assignment stage, thanks to our 3D pattern routing strategy, a via

eo(u, v)
Ig(u, v)

0 0 0
r(u, v) r(u, v) r(u, v)

Fig. 2: Congestion Cost Composition.

cost scheme can be embedded to reflect the impact. Suppose » and
u’ are the lower and upper G-cells connected by a via, the via
cost of via(u,u’) can be computed using Equation (5), where uvc
represents the given unit via cost. The logistic function with the
same slope value is similar to that for wire edge, and can model
the ability of the detailed router to avoid overflow in either G-cell
u or u’. Note that for simplicity, no area overflow cost for vias is
included.

costy(u,u’) = uve x (1 +1g(u) +lg(u)), (5a)
lg(u) = (1.0 4 exp(slope x r(u))) " (5b)

C. Initial Routing / 3D Pattern Routing

Traditional pattern routing generates 2D topologies only, while
our proposed 3D pattern routing directly generates 3D topologies
without the need of an extra layer assignment stage. Take L-
shape routing as an example, traditional pattern routing will only
choose between 2 possible paths for each two-pin net, and some
of the paths may turn out to be impossible to be routed after
layer assignment even if they did not cause any overflow in the
2D grid graph. However, the proposed 3D pattern routing combines
2D pattern routing and layer assignment. It chooses a path among
2 x L x L possible options for every two-pin net, where L is
the number of layers. With the help of dynamic programming, an
optimal solution with respect to our cost scheme on wire length
and congestion is guaranteed to be found if it exists.

In order to perform 3D pattern routing, each multi-pin net will
first be broken down into a set of two-pin nets in a step called
pattern routing planning. In the same step, the order in which
they are routed will also be determined. A dynamic programming
algorithm is then conducted to pattern route the two-pin nets and
minimize the overall cost.

1) Pattern Routing Planning: During the planning stage, we will
first utilize FLUTE [13] to generate a rectilinear Steiner minimum
tree (RSMT) for each multi-pin net so as to guide the pattern routing
to produce shorter wire length. FLUTE is an RSMT construction
algorithm adopting a look-up table approach, which is both fast
and optimal for low-degree nets. However, FLUTE is unaware
of routing congestion. We used a technique called edge shifting
described in [14] to alleviate the problem. The multi-pin net will
then be broken down into a set of two-pin nets in such a way that
every two points sharing an edge in the RSMT will form a two-pin
net.

Next, we will determine the order in which the two-pin nets
will be routed. A degree-one node in the RSMT will be randomly
picked as the root, and a depth first search (DFS) traversal will
be performed to visit all the other nodes. The two-pin nets will be
routed in the reverse order in which they are visited in this traversal.
For example, suppose we pick Ps of the RSMT in Figure 3a as
the root, and the DFS traversal visits the nodes in the order of
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Fig. 3: Two-Pin Nets Ordering.

Ps, Py, Ps, P>, P3 and P;. We then label the two-pin nets in the
reverse order as e, e2, €3, e4, e5 and eg, which is also the order in
which they will be routed. Note that each two-pin net will be routed
from destination to source, and the arrows of the edges indicate the
directions that they will be routed. We call the point P; pointed to
by an out-going edge from P; the parent of P;, and we say P; is
a child of P; or P; € ch(F).

2) Dynamic Programming: Having the nets been broken down
into two-pin nets and their order decided, a dynamic program-
ming algorithm is designed to perform pattern routing and layer
assignment simultaneously. Our dynamic programming algorithm
is similar to that introduced in [15]. However, their algorithm only
performs layer assignment after a net is pattern routed, while our
algorithm combines the two steps so as to avoid loss of accuracy
caused by compressing 3D grid graph to 2D.

First, we define S(P;) as the sub-tree including P; and all its
descendants, and S(P;, P;) as the sub-tree including P;, P;’s child
P; and all the descendants of P;. Take the net in Figure 3 as an
example, S(P,) refers to the sub-tree comprised of { P2, P, Ps}
and S(Py, P») refers to the sub-tree comprised of { P4, P>, P1, P3}.
Most importantly, as the building blocks of our dynamic program-
ming algorithm, we define minimum sub-tree cost, msc(P;, 1),
as the minimum cost of routing the sub-tree S(P;) rooted at
P;;, the G-cell on the 1th layer and at the position of P;, and
define msc(P;, Pj,1) as the minimum cost of routing the sub-tree
S(P;, P;) rooted at P; ;.

For each two-pin net P; — P;, we’ll first calculate msc(P;, 1)
for [ = 1,..., L using Equation (6), assuming there are totally L
layers, and P; has k children {Pp(1), ..., Pe(i) }-

msc(P;, 1) =
J<k
1gnzlligL(COSt(V(Pi’ liy ey liy 1)) + Zl msc(Pi, Pejy, 1))
1<i <L =

(6)

Note that in Equation (6), V (P, l1,...,lk, 1) is the set of vias
needed to connect all the & children sub-trees and pins to P;
if they exist, and the cost function is simply the one described
in Equation (3). For example, if a node P; has k children and
the pin itself is on the l;h layer, to connect them all to P;;
will need vias at P; from the min(ly, ..., I, 1, )" layer to
the maz(l1, ..., 1k, lp,1)!" layer. If a node P; has no children,
msc(P;,1) will only consist of the via cost. After that, all possible
3D L-shapes to connect P; — P; will be considered to update

Ml,l
(b)
Fig. 4: Two-Pin Net 3D L-Shape Routing.

msc(Pj, P;,l) for 1l =1, ..., L by,

msc(Pj, P;,l) =
lg}igL(COSt(Path(PiJw Mitalew,lv PJ'J)) + mSC(Pi7 ll))

r=1,2

O]

Path(P;,1;, Mz, My1, Pj;) is an L-shape path with two wire
segments, P;;, — My, and M,; — P;;, and a stack of vias,
Mz, — Mg, The variable x specifies the two possible options of
the L-shape route, and the turning position of the L-shape path is
denoted by M, _. Figure 4a shows the 2D structure of the two-pin
net, and Figure 4b shows the 3D structure of one possible path. In
the example, M is chosen as the turning position. There are wires
connecting P; 1 and M1 on the first layer, and wires connecting
M 4 and Pj4 on the fourth layer. The two layers are connected
by three vias from M 1 to M 4.

After the minimum costs of all sub-trees are computed by
Equations (6) and (7), the minimum sub-tree cost of the root is
the final cost (ming<;<r, msc(Ps,!) in our example) and we can
then trace back the solution to find the path achieving the minimum
cost.

D. Multi-level 3D Maze Routing

After initial routing, those nets with violations will be ripped up
and may go through multiple iterations of rip-up and reroute (RRR)
by maze routing. However, maze routing on the whole 3D grid
graph GG will be very time consuming due to the large search space.
One alternative is to restrict the searching area to the bounding box
of the net. Although this approach makes rerouting much faster, the
routing quality will be compromised. Considering the above pros
and cons, we propose a multi-level 3D maze routing to enable
whole-graph searching, while achieving a good trade-off between
runtime and routing quality. The proposed routing technique has
two levels, maze route planning and fine-grained maze routing
within guides, each of which serves a different purpose. Maze route
planning aims at finding a smaller but highly routable search space,
while fine-grained maze routing seeks to find a path with minimum
actual cost within the search space.

First, we introduce an idea called grid graph coarsening, which
means to compress a block of G-cells (5x5 in our implementa-
tion) into a coarsened cell, like what is shown in Figure 5. The
resource R(A) of a coarsened cell A is computed as the average
resource of the G-cells in A. We then use the following formula to
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Fig. 5: Multi-level 3D Maze Routing.

model the edge cost between two adjacent coarsened cells.
1 1
max(R(A),0.1)  max(R(B),0.1)
1
max(R(A),0.1) = max(R(B),0.1)

In Equation (8), Cw (A, B) represents the edge cost between
coarsened cells A and B when they are on the same layer, while
Cv (A, B) represents the edge cost when two cells are on adjacent
layers. The parameter s refers to the coarsening scale, i.e., the
number of G-cells in each row (column) of the coarsened cell.
In our implementation, s is set to be 5. We multiply the cost by the
parameter s because moving from the center of a coarsened cell
A to that of its neighboring coarsened cell B on the same layer,
the wire will pass through s fine-grained edges. However, moving
from the center of A to that of B on an adjacent layer, only one via
is needed. This cost scheme for maze routing planning is highly
sensitive to resource changes, and the cost will double when the
resource is reduced by half.

In this way, a coarsened grid graph GG, with a much smaller size
than the original graph G can be constructed, with a different cost
scheme to enable the global router to navigate in G.. The grey
area in Figure 5 shows an example solution of this maze route
planning step. The solution is then transformed into bounding boxes
and fed into the fine-grained maze router. The fine-grained maze
router will then perform another level of maze routing with the cost
scheme discussed in Section III-B within these bounding boxes,
aiming at finding a minimum cost path. An example solution of
the fine-grained maze routing step is shown as the dark black path
in Figure 5.

Cw(A,B) =5 x ( ), (8a)

Cv(A,B) = (8b)

E. Postprocessing / Guide Patching

Since the output of the global router is connected rectangular
route guides, not restricted to paths of single G-cell width, we can
add new guides to improve detailed routability, so long as the guides
still forms a connected path. For this reason, we develop a technique
called patching - adding new stand-alone guides to alleviate routing
hot spots. We propose 3 kinds of patching to address hot spots
that occur for different reasons, namely pin region patching, long
segment patching and violation patching.

1) Pin Region Patching: Pin region patching is the most effective
patching among the three. It is needed due to the fact that pin
accessibility is crucial for a net to be successfully routed, while
it also involves too many details for global routing to handle.
Therefore, the ideal way of improving pin accessibility is to identify
those hard-to-access pins and assign more resources to them so that
the detailed router can have the flexibility to find a way to access the
pins. Our global router will check the upper (or lower) two layers
of a pin, which are vital for accessing the pin. If the resource on

7

(a) Pin Region Patching.

(b) Long Segment Patching.
Fig. 6: Different Kinds of Patching.

(c) Violation Patching.

either of them is below a specified threshold 7", a larger guides will
be patched. Take Figure 6a as an example, G-cell pg contains a pin,
so the resources of p1 and p2 will be checked. If either r(p1) < T
or r(p2) < T, three 3 x 3 patching guides will be added to all the
three layers.

2) Long Segment Patching: A completely vacant long track
is often hard to find, so a longer routing segment often means
more wrong way wires and causing more congestion. We will
thus identify the bottlenecks for long segments and add patches
above or below to help with track switching, so as to reduce wrong
ways. If a guide is longer than a specified length I, we’ll consider
long segment patching. Starting from one end of the segment
and walking towards the other, if a G-cell with resource below
a threshold 7' is encountered, a single G-cell route guide will
be patched above or below it, depending on which of them has
sufficient resource as shown in Figure 6b. Besides, after a G-cell is
patched we will skip next I G-cells before we patch another one.

3) Violation Patching: For G-cell with inevitable violations,
patching will be used again to enable the detailed router to search
with more flexibility. Figure 6¢c shows an example of violation
patching, in which the G-cells on the two sides of the G-cell with
violation, along with the three G-cells above are patched.

IV. EXPERIMENTAL RESULTS

We used C++ with the boost geometry library [16] to implement
our global router, and we used Rsyn [17] to parse LEF/DEF
formats. All our experiments are conducted on a 64-bit Linux
workstation with Intel Xeon 3.4 GHz CPU and 32 GB memory.
The benchmarks are all from ICCAD’19 global routing contest [1].
We global route all the benchmarks using 8 threads in accordance
with the contest, and Dr. CU 2.0 [4] is used to generate the detailed
routing solution. Lastly, the final results are reported by Cadence
Innovus 18.1 [18]. Table II first shows the detailed decomposition
of the overall detailed routing scores. Our global router produces
solutions with similar wire length and via score with the first place
router, but with 1 — 2% fewer shorts and spacing violations. We
then compare both our scores and runtime with the first and second
places in the ICCAD’19 contest, which are shown in Table III. Note
that the average runtimes and scores are scaled by those of ours.
Our router is around 9% faster than the first place and 15 times
faster than the second place. The guides generated by our global
router takes 5753 seconds on average for the detailed router to
route, which is similar to that of the first place (< 1% difference)
and 9% slower than the second place. However, our router produces
detailed routing result comparable to the first place and around 11%
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TABLE II: Scores Decompositions Compared with the First and Second Places in ICCAD’19 Global Routing Contest.

Design Wire Length & Via Non-Preferred Usage Short Min-Area and Spacing
1st 2nd ours 1st 2nd Ist 2nd ours Ist 2nd ours

18test5 15614801 15728314 15613663 155898 457247 166994 318500 505340 330425 271000 381500 288500
18testSm* 15810136 15426511 15807997 126947 213345 273220 270765 261150 232000 222500 224000
18test8 37434586 37385956 37441058 261785 592927 212445 333670 209470 143500 255500 144000
18test8m 36743453 35912143 36746610 339927 575688 210580 408540 194510 132000 184500 129500
18test10 39037528 39291497 39061258 891219 1488538 671755 1705070 669965 483000 948000 471000
18test10m 40233544 40209785 40246090 1433956 2957377 1413120 4633110 71940390 4021620 705500 4058000 685500
19test7 77294941 78534037 77286072 1428490 1916508 1428396 9800300 13820375 9680620 6987000 9213000 6883000
19test7m 70845164 70994659 70848996 1528759 2643684 1535876 9735870 18154405 9943260 6634000 8349500 6686000
19test8 119200121 120443016 119199593 1339678 1789897 1338449 7826500 9472060 7780220 6053000 6525000 6103000
19test8m 116107932 117059329 116062781 1466713 2194550 1493314 8815065 11847405 8561400 6158500 6496500 6089000
19test9 184218174 186350610 184246497 | 2185321 2955375 2181774 14783160 18772785 14765850 10865500 11769000 10847000
19test9m 179227079 180119959 179242111 2334544 3350841 2323850 16289715 21250500 16020280 11124500 12105500 10948000

Avg. 1.00 1.01 1.00 1.00 1.56 1.02 2.33 1.00 1.01 1.22 1.00

* Note that 18testSm is the abbreviation for ispd18_test5_metalS. The same rule applies to other designs.

TABLE III: Runtime and Scores Compared with the First and Second
Places in ICCAD’19 Global Routing Contest.

. GR Runtime (s) DR Score
Design
Ist 2nd ours Ist 2nd ours
18test5 83 56 68 16111082 16690901 16089196
18testSm 80 403 85 16204442 15910624 16210303
18test8 260 229 236 37920522 38312552 37908815
18test8m 240 621 300 37277889 36896370 37293962
18test10 349 510 334 40613594 42485106 40600501
18test10m 350 21119 373 45680831 115107553 46300610
19test7 564 1297 506 88453086 94332917 88577731
19test7m 335 1780 377 82380132 91849749 82169293
19test8 562 966 365 128356260 131762471 128412302
19test8m 499 32257 588 126172995 131164782 126429212
19test9 896 1207 528 201262621 208180772 201270655
19test9m 593 6755 658 197686238 204815803 197937335
Avg. 1.09 15.21 1.00 1.00 1.11 1.00

better than the second place. Besides, our algorithm’s peak memory
is close to the first place and is 1.83 times of that of the second
place on average (ours is 8.22 GB on average and is 19.8 GB for
the biggest design).

V. CONCLUSION

In this work, we propose a 3D global router that can well balance
routing quality and efficiency. A sophisticated cost scheme for
wires and vias is designed to optimize wire length, via number and
congestion. A technique of 3D pattern routing combines 2D pattern
routing and layer assignment, and is able to route most of the nets
fast and optimal. A multi-level maze routing strategy first narrows
the search space to a smaller region with sufficient resource, and
then performs bounded maze routing to search for a minimum cost
path. Besides, we also demonstrate that the patching technique helps
to improve detailed routability. Compared with the top participants
of ICCAD’19 global routing contest, our global router exhibited
competitive performance and runtime.
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