
Multi-FPGA Co-optimization: Hybrid Routing and

Competitive-based Time Division Multiplexing Assignment

Dan Zheng∗

The Chinese University of Hong Kong

Hong Kong SAR

dzheng@cse.cuhk.edu.hk

Xiaopeng Zhang∗

The Chinese University of Hong Kong

Hong Kong SAR

xpzhang@cse.cuhk.edu.hk

Chak-Wa Pui
The Chinese University of Hong Kong

Hong Kong SAR

cwpui@cse.cuhk.edu.hk

Evangeline F.Y. Young
The Chinese University of Hong Kong

Hong Kong SAR

fyyoung@cse.cuhk.edu.hk

ABSTRACT

In multi-FPGA systems, time-division multiplexing (TDM) is a

widely used technique to transfer signals between FPGAs. While

TDM can greatly increase logic utilization, the inter-FPGA delay

will also become longer. A good time-multiplexing scheme for inter-

FPGA signals is very important for optimizing the system perfor-

mance. In this work, we propose a fast algorithm to generate high

quality time-multiplexed routing results for multiple FPGA systems.

A hybrid routing algorithm is proposed to route the nets between

FPGAs, by maze routing and by a fast minimum terminal spanning

tree method. After obtaining a routing topology, a two-step method

is applied to perform TDM assignment to optimize timing, which

includes an initial assignment and a competitive-based refinement.

Experiments show that our system-level routing and TDM assign-

ment algorithm can outperform both the top winner of the ICCAD

2019 Contest and the state-of-the-art methods. Moreover, compared

to the state-of-the-art works [17, 22], our approach has better run

time by more than 2×with better or comparable TDM performance.

1 INTRODUCTION

In recent years, systems with multiple field-programmable gate

arrays (FPGAs) become very popular in applications that require

high efficiency and frequent modifications, such as deep learn-

ing [13], data center [4], logic emulation and rapid prototyping

of large designs [5], etc. In multi-FPGA systems, different FPGAs

are connected by direct hardwired connections or programmable

interconnection networks [12].

∗These authors contributed equally to this work.

The work described in this paper was partially supported by a grant from the Research
Grants Council of the Hong Kong Special Administrative Region, China (Project No.

CUHK 14202218 and CUHK 14209320).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-7999-1/21/01. . . $15.00
https://doi.org/10.1145/3394885.3431565

In multi-FPGA systems, the utilization of logic resources is lim-

ited by the routing resources between FPGAs. Time-division mul-

tiplexing (TDM) is a method that multiplexes the use of the I/O

pins and inter-FPGA wires for inter-FPGA signals [1]. Since this

technique can effectively increase the number of logical pins, the

resulting logic resource utilization can be improved. However, each

time-multiplexed signal has to wait for its turn of transmission and

the inter-FPGA delay is lengthened.

In a modern compilation flow as shown in Figure 1, the negative

effects of time-multiplexing on delay can be reduced by taking TDM

delay into account during partitioning, routing and post-routing[6].

A recent work [3] proposes a framework that performs TDM as-

signment and partitioning simultaneously, which results in much

faster system clock frequency compared to ordinary cut-driven

partitioning. There are several works that optimize TDM ratios in

the post-routing stage. TDM ratio is a metric related to the delay of

an inter-FPGA net and its definition will be described in details in

Section 2. The works [7–10] formulate the TDM assignment prob-

lem as an integer linear program (ILP), trying to put non-critical

inter-FPGA nets in TDM wires to improve logic utilization without

affecting the system timing. The works [18–20] propose a two-step

analytical framework to solve the TDM assignment problem inmod-

ern multi-FPGA systems. These works consider all the practical

TDM constraints and hence will be time consuming.

Routings for ASICs and FPGAs have been extensively studied [2,

14, 15], and many focus on wirelength reduction and removal of

design rule violations. However, in system-level routing, we need

to consider the overall performance of the whole system. For multi-

FPGA systems, not only wirelength, TDM assignment is also very

important since the system performance is largely affected by the

delay of inter-FPGA nets. A recent work [17] explored this problem

by a timing-aware ratio assignment algorithm. Another recent

work [22] performed TDM assignment by Lagrangian relaxation,

which achieved good TDM ratio but suffered from long run time.

In this work, we propose an effective algorithm that can gener-

ate time-multiplexed routing schemes for large scale multi-FPGA

systems. The major contributions are summarized as follows:

• A system-level routing and TDM assignment algorithm is

proposed to optimize timing of multi-FPGA systems, which

considers both wirelength and TDM ratios. Most parts of our

176

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Dan Zheng, Xiaopeng Zhang, Chak-Wa Pui, and Evangeline F.Y. Young

Design

Logic synthesis
&

Technology mapping

Partitioning into multi
FPGAs

Pin assignment,
placement and routing
within individual FPGAs

Inter-FPGA Routing &
TDM assignment

Configuration bit stream
generation for FPGAs

TDM Optimization

Figure 1: A typical compilation flow for multi-FPGA sys-

tems [11] with TDM technique.

algorithms are designed to be multi-thread friendly, which

can be parallelized with little or no quality loss.

• A hybrid routing algorithm is proposed to generate the rout-

ing topology of each net. In particular, we use maze routing

to route the nets that are timing critical. The remaining nets

are routed by a fast minimum terminal spanning tree method

in parallel.

• A fast and effective two-step algorithm is proposed to deter-

mine the TDM ratio of each inter-FPGA routing edge.

• Experimental results show that our algorithm not only can

satisfy all the TDM constraints but also has better perfor-

mance than the top winner of the ICCAD 2019 Contest and

the state-of-the-art works [17][22].

The remainder of this paper is organized as follows. Section 2

gives the preliminaries of the problem. Sections 3-5 first give an

overview of our approach and then introduce the details. Section 6

shows the experiment results, and the conclusion is in Section 7.

2 PRELIMINARIES

In this section, we will first explain our target architecture. The

problem definition will then be introduced. The notations used

in the rest of this paper are shown in Table 1. Note that in our

terminology, wire refers to the connection between two FPGAs

while edge refers to the routing edge of a net. Besides, only inter-

FPGA nets are considered in our problem.

2.1 Target Architecture

We consider a multi-FPGA systemwith time-multiplexed hardwired

inter-FPGA connections where two FPGAs are adjacent logically

if they are directly connected in the system. In our target system,

two adjacent FPGAs are called an FPGA-pair.

Since the number of nets is much larger than the number of

physical wires between FPGAs, time-multiplexed wires are used

to connect different FPGAs. In such systems, each inter-FPGA net

is assigned a TDM ratio that represents how many other nets are

sharing one physical wire with this net. Only the nets in the same

direction and with the same TDM ratio can be assigned to the same

physical wire. When estimating the delay of a signal in our target

architecture, the worst case scenario is assumed, i.e., an inter-FPGA

signal needs to wait for an entire TDM cycle for its turn to be

Table 1: Notations

𝑒𝑖 The routing edge 𝑖 in the routing graph.

𝐸𝑖 The set of routing edges of net 𝑖 .

𝐸𝑤𝑖 𝑗 The set of routing edges through wire 𝑒𝑤𝑖 𝑗 .

𝐸
𝑔
𝑖 The set of routing edges belonging to net group 𝑖 , which

is
⋃

𝑛𝑒𝑡 𝑗 ∈𝑁𝑖
𝐸 𝑗 .

𝑒𝑤𝑖 𝑗 The wire between FPGA 𝑖 and FPGA 𝑗 .

𝐸𝑤 The set of wires of the FPGA system.

𝑥𝑖 The TDM ratio of edge 𝑒𝑖 .

𝐺𝑛 The set of net groups.

𝑁𝑖 The set of nets in net group 𝑖 .

𝑁 The set of all nets.

𝑢𝑖 𝑗 The usage of wire 𝑒𝑤𝑖 𝑗 , which is
∑
𝑒𝑘 ∈𝐸

𝑤
𝑖 𝑗

1
𝑥𝑘

𝑟𝑘 The total TDM ratio of the routing edges in net group 𝑘
and 𝑟𝑘 =

∑
𝑛𝑒𝑡 𝑗 ∈𝑁𝑘

∑
𝑒𝑖 ∈𝐸 𝑗

𝑥𝑖 .

𝑟𝑚𝑎𝑥 The maximum total TDM ratio of all net groups such that

𝑟𝑚𝑎𝑥 = max𝑔𝑟𝑝𝑘 ∈𝐺𝑛 (𝑟𝑘).

transmitted. Hence, the transmission delay is proportional to the

TDM ratio of the wire. Due to architectural limitations, a TDM ratio

can only be an even number in this work.

2.2 Problem Definition

In system-level routing, given a netlist and the FPGA-connectivity,

we need to decide the routing topology of each net and estimate

a TDM ratio of each inter-FPGA edge such that the system per-

formance is maximized. To optimize timing, the total delay of the

most critical signal paths in the netlist should be minimized. To

model this, a number of net groups are defined, and each net group

represents the set of nets on a critical path. Note that, every net

belongs to at least one group. Since the delay of a signal path is

mostly determined by the delays of the inter-FPGA signals on the

path, it can be estimated by the total TDM ratio of the nets in the

corresponding net group. A metric called maximum group TDM

sum 𝑟𝑚𝑎𝑥 is defined and is the objective to be minimized, as shown

in Equations (1b)–(1c). In practice, the TDM ratios should satisfy all

the constraints mentioned in Section 2.1. However, in system-level

routing, we need a very fast method to estimate the timing of a

routing solution, which can then be used to provide feedback for

the partitioning step or the routing step. Therefore, in our prob-

lem formulation, as shown below in Equation (1), the limit on the

actual number of physical wires in an FPGA-pair is modelled by

Equation (1d), based on the number of nets between the FPGA-pair

177

Multi-FPGA Co-optimization: Hybrid Routing and Competitive-based Time Division Multiplexing Assignment ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

F1

F2 F3

F4

2

2

4
F5

4

2 2

(a) 𝑟𝑚𝑎𝑥 = 8

F2 F3

F4

2
2

F1

2

F5
2

2

2
(b) 𝑟𝑚𝑎𝑥 = 6

Figure 2: An example of the system-level routing problem.

and their TDM ratios.

min 𝑟𝑚𝑎𝑥 (1a)

𝑠 .𝑡 . 𝑟𝑘 =
∑

𝑛𝑒𝑡𝑖 ∈𝑁𝑘

∑

𝑒 𝑗 ∈𝐸𝑖

𝑥 𝑗 , ∀𝑔𝑟𝑝𝑘 ∈ 𝐺𝑛 (1b)

𝑟𝑚𝑎𝑥 = max
𝑔𝑟𝑝𝑘 ∈𝐺𝑛

𝑟𝑘 (1c)

∑

𝑒𝑘 ∈𝐸
𝑤
𝑖 𝑗

1

𝑥𝑘
≤ 1, ∀𝑒𝑤𝑖 𝑗 ∈ 𝐸𝑤 (1d)

𝑥𝑘 is an even number (1e)

Every net is connected by its routing edges. (1f)

An example is shown in Figure 2. In this example, the black

lines denote the connections between FPGAs, while the blue, green

and red lines represent three nets, 𝑛𝑒𝑡1, 𝑛𝑒𝑡2 and 𝑛𝑒𝑡3 respectively.
There are three net groups: 𝑔𝑟𝑝1 contains 𝑛𝑒𝑡1, 𝑔𝑟𝑝2 contains 𝑛𝑒𝑡2
and 𝑛𝑒𝑡3, and 𝑔𝑟𝑝3 contains 𝑛𝑒𝑡3. Given the routing scheme in

Figure 2a, the optimal TDMassignmentwill result in 𝑟𝑚𝑎𝑥 = 𝑟𝑔𝑟𝑝1 =
2 + 2 + 4 = 8. However, if we move the routing edge of 𝑛𝑒𝑡1 from
𝑒𝑤3,5 to 𝑒𝑤1,5 (Figure 2b), according to the wire usage constraints

(𝑢𝑖 𝑗 =
∑
𝑒𝑘 ∈𝐸

𝑤
𝑖 𝑗

1
𝑥𝑘

≤ 1), the TDM ratio of the edge of 𝑛𝑒𝑡2 between

FPGA3 and FPGA5 can be reduced from 4 to 2. As a result, the

optimal 𝑟𝑚𝑎𝑥 (𝑟𝑚𝑎𝑥 = 𝑟𝑔𝑟𝑝1 = 2 + 2 + 2 = 6) can be reduced to 6.

3 OVERVIEW

The overall flow of our algorithm, as shown in Figure 3, can be di-

vided into two parts, routing and TDM assignment. During routing,

the routing topology is generated such that the pins of each net

are connected and the routing edges are distributed evenly among

the connections between FPGAs. Given the routing result, we will

determine the TDM ratio of each routing edge such that 𝑟𝑚𝑎𝑥 is

minimized. To be specific, a fast and effective method is first applied

to assign an initial TDM ratio for each routing edge such that the

resulted 𝑟𝑚𝑎𝑥 is relatively good. Legalization is then performed

to remove all constraint violations while disturbance to the initial

assignment result is minimized. Finally, the TDM ratios will be

further refined.

4 ROUTING

Given a netlist and the connections between the FPGAs, we need

to find the routing topology of each net. As can be seen from Equa-

tion (1), both routing congestion and long wirelength will result in

a large 𝑟𝑚𝑎𝑥 . To balance routing congestion and wirelength, we set

the cost of routing through a wire 𝑒𝑤𝑝𝑞 as in Equation (2).

𝑐𝑜𝑠𝑡𝑝𝑞 =
|𝐸𝑤𝑝𝑞 | · |𝐸

𝑤 |
∑
𝑒𝑤𝑖 𝑗 ∈𝐸

𝑤 |𝐸𝑤𝑖 𝑗 |
+𝐶, (2)

Hybrid Routing Nets

Initial Assignment and Legalization

Competitive-based Refinement

Routing & TDM Assignment Result

FPGA Connections Net Groups Netlist

System-Level Routing with TDM

Figure 3: Overall flow of our system-level routing and TDM

assignment algorithm.

In Equation (2), the first item reflects congestion and is computed

as the ratio between the number of routing edges on wire 𝑒𝑤𝑝𝑞 and
the average number of routing edges on each wire. If this number

is less than one, the wire is not congested and the cost of routing

on this wire is small. The second term 𝐶 is used to prevent long

path length, which is set to be 105 in our implementation.

In our routing algorithm, all the routing groups will be classified

as dominant groups or non-dominant groups according to the follow-

ing procedure. First of all, all the routing groups will be sorted in a

non-descending order of their total numbers of pins. The smallest

index 𝑖 is found such that the 𝑖𝑡ℎ group in this sorted list has its

number of pins less than a fraction 1
𝑎 of that of the (𝑖 + 1)𝑡ℎ group.

Then all the groups with indexes 𝑖 + 1 or above will be classified
as dominant groups while others are non-dominant groups. In our

implementation, the parameter 𝑎 is set to 50. A dominant group

will have many more pins than any non-dominant group. In our

hybrid routing algorithm, we will first find the dominant and non-

dominant groups according to their numbers of pins. To route all

the nets, we have two schemes: maze routing and fast minimum

terminal spanning tree (MTST) method. Since the nets in domi-

nant groups are more timing critical, they are first routed using

maze routing, which can achieve better quality compared to the

fast MTST method. The rest of the nets are then routed by the fast

MTST method, which can effectively speed up the routing process

with little quality loss. Details of these two routing approaches will

be discussed in the following sections.

4.1 Maze Routing

Maze routing is a widely adopted method [2, 14, 15] for its high

flexibility and routability. In this work, we adopt the maze routing

scheme from an open-source detailed router called Dr.CU [2]. For a

multi-pin net, path search starts from a source pin. When reaching

the first unvisited pin, all vertices on the path are regarded as source

for searching the next unvisited pin, until all the pins are reached.

178

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Dan Zheng, Xiaopeng Zhang, Chak-Wa Pui, and Evangeline F.Y. Young

Algorithm 1 Fast MTST Method

Require: Non-dominant nets and the routing graph.

Ensure: Every non-dominant net is connected by its routing edges.

1: evenly divide all nets into𝑚 batches in a random manner;

2: for each batch do

3: find the shortest paths of all FPGA pairs;

4: for each 𝑛𝑒𝑡𝑖 in the batch do
5: construct a complete graph 𝑔𝑐 for the pins of 𝑛𝑒𝑡𝑖 ;
6: find an MST in 𝑔𝑐 ;
7: unfold the MST edges into the corresponding shortest

paths found on line 3;

8: end for

9: update the wire usages;

10: end for

4.2 Fast MTST Method

The nets belonging to non-dominant groups are named non-dominant

nets. Compared to those in dominant groups, non-dominant nets

have little impact on the objective value. Instead of using maze

routing, we adopt a more efficient scheme called fast MTST, which

is inspired by MTST [16]. We also propose a multi-threaded scheme

to find a Steiner minimum tree (SMT) in a general graph quickly.

Compared to the original MTST, our fast MTST is more compatible

with multi-threaded implementation.

Algorithm 1 shows the details of our fast MTSTmethod. First, the

non-dominant nets are evenly divided into𝑚 batches in a random

manner. For each batch, we use the Floyd-Warshall algorithm to

find the shortest path between every FPGA pair in the system. As

shown on lines 5-7, for each net in the batch, we will first construct

a complete graph 𝑔𝑐 of its pins and the edge weight is set to be
the cost of the shortest path between the corresponding FPGA pair

obtained by the Floyd-Warshall algorithm. A minimum spanning

tree (MST) is then found on 𝑔𝑐 , and the edges in the MST will be

unfolded into their corresponding shortest paths. Note that, after

unfolding, repeated routing edges will be eliminated.

Figure 4 gives an example of our fast MTST method. As shown

in Figure 4a and 4b, the shortest paths of all the FPGA pairs are

found and recorded. Given a net with three pins (F1, F3, and F8), a

complete graph is constructed from the result of Figure 4b. An MST

is then constructed on the complete graph, which is shown as blue

lines in Figure 4c. Finally, the edges on the MST are unfolded into

their corresponding shortest paths and repeated edges (between F3

and F6 in Figure 4d) are removed.

4.3 Parallel Implementation

Most parts of our routing algorithm can be parallelized with little

quality degradation. For the dominant nets, maze routing can be

parallelized among different nets but the wire usage should be

updated in a synchronized manner. For the non-dominant nets, the

batches are executed sequentially but the Steiner tree construction

within the same batch can be parallelized. For each batch, the wire

usage will be updated after the routing edges of all the nets are

found. In our experiments, by using 8 threads, our routing algorithm

can be 3X faster on average and can achieve up to 6X speedup in

some designs. Besides, compared to the original MTST [16] in the

F1 F2 F3

F4 F5 F6

F7 F8 F9

1 9

2

1

3 2

1
3 1

2 1

4

(a)

F1 F2 F3

F4 F5 F6

F7 F8 F9

1

6

2 3 4

3
5

5

(b)

F2

F4 F5 F6

F7 F9

5

46

F1-F2-F5-F6-F3

F3-F6-F9-F8F1-F4-F7-F8

F1 F3

F8

(c)

F1 F2 F3

F4 F5 F6

F7 F8 F9

1 9

2

1

3 2

1
3 1

2 1

4

(d)

Figure 4: An example of the fast MTST method. (a) shows 9

FPGAs and the weights of the wires. (b) shows the shortest

paths between F1 and the other FPGAs. (c) shows the com-

plete graph constructed from (a) and the resulted MST. (d)

shows the unfolded paths of the MST in (c).

same environment of 8 threads, our fast MTST has better run time

by 1.9X with the same quality.

5 TDM ASSIGNMENT

5.1 Initial Assignment

Since the objective is to minimize 𝑟𝑚𝑎𝑥 which is the maximum TDM

sum 𝑟𝑘 among all the net groups, our method will calculate the

TDM ratio of each routing edge from the net groups’ perspective.

Details of our initial assignment are shown in Algorithm 2. In

our algorithm, there is a target TDM sum 𝑏, which represents the
estimated 𝑟𝑚𝑎𝑥 and will guide the TDM assignment of each routing

edge. To initialize the TDM ratio of each routing edge, wewill set the

initial TDM sum target 𝑏 to a large number, which is 5 × 107 in our

implementation. On lines 5-7, we first assume that the routing edges

in the same net group 𝑔𝑟𝑝𝑖 have the same TDM ratio (𝑥
𝑔
𝑖 = 𝑏

|𝐸
𝑔
𝑖 |
).

However, for routing edges belonging to several net groups, the 𝑥
𝑔
𝑖

of those groups may vary. To minimize 𝑟𝑚𝑎𝑥 , the TDM ratio of each

routing edge is set to be the minimum 𝑥
𝑔
𝑖 of the groups it belongs

to. As shown on line 9, the target TDM sum 𝑏 will be multiplied
by the average usage of the wires at each iteration such that the

usage of each wire will gradually converge to one. According to

the experimental results, our algorithm usually converges in two

iterations and the resulted 𝑟𝑚𝑎𝑥 is relatively good compared with

the 𝑟𝑚𝑎𝑥 obtained in the first iteration.

5.2 Legalization

After the initial assignment step, a TDM ratio of integral type will

have been assigned to each routing edge, which might not be a legal

assignment according to the problem formulation (Section 2.2). A

179

Multi-FPGA Co-optimization: Hybrid Routing and Competitive-based Time Division Multiplexing Assignment ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

Algorithm 2 Initial Assignment

Require: The routing topology.

Ensure: An optimized and almost legalized TDM assignment re-

sult.

1: let the TDM ratio 𝑥 𝑗 of each routing edge be∞;

2: let the TDM sum target 𝑏 be a large number;
3: let the threshold 𝜎 be a small number;

4: do

5: for each 𝑔𝑟𝑝𝑖 ∈ 𝐺𝑛 do

6: 𝑥 𝑗 = min(𝑥 𝑗 ,
𝑏
|𝐸

𝑔
𝑖 |
), ∀𝑒 𝑗 ∈ 𝐸

𝑔
𝑖 ;

7: end for

8: 𝑢𝑝𝑞 =
∑
𝑒𝑘 ∈𝐸

𝑤
𝑝𝑞

1
𝑥𝑘
, ∀𝑒𝑤𝑝𝑞 ∈ 𝐸𝑤 ;

9: 𝑏 = 𝑏 ·

∑
𝑒𝑤𝑖 𝑗 ∈𝐸

𝑤 𝑢𝑖 𝑗

|𝐸𝑤 |
;

10: while ∃𝑒𝑤𝑝𝑞 ∈ 𝐸𝑤 , |𝑢𝑝𝑞 − 1| > 𝜎

net1

net1 net2 net3

net4

net4
net5

net6Group 4

Group 3

Group 2

Group 1 e

e

Compression
threshold

(a) Initial TDM sums and the target.

net1

net1 net2 net3

net4

net4
net5

net6Group 4

Group 3

Group 2

Group 1

Compression
threshold

(b) The large groups are compressed.

net1

net1 net2 net3

net4

net4
net5

net6Group 4

Group 3

Group 2

Group 1

New compression
threshold

(c) All groups are enlarged by legalization.

Figure 5: Examples of the CR algorithm.

legal assignment requires that the TDM ratios must be even num-

bers and the wire usage constraints (𝑢𝑖 𝑗 =
∑
𝑒𝑘 ∈𝐸

𝑤
𝑖 𝑗

1
𝑥𝑘

≤ 1) must

be satisfied. The assignment will be legalized in the legalization

step. The TDM ratio of each routing edge is first scaled linearly by

multiplying with the usage of the wire 𝑢𝑖 𝑗 as shown in Equation (3).

𝑥 ′𝑘 = 𝑥𝑘 · 𝑢𝑖 𝑗 , ∀𝑒𝑘 ∈ 𝐸𝑤𝑖 𝑗 ,∀𝑒
𝑤
𝑖 𝑗 ∈ 𝐸𝑤 . (3)

After scaling, the usage of each wire will be exactly one, satisfying

the wire usage constraint:
∑

𝑒𝑘 ∈𝐸
𝑤
𝑖 𝑗

1

𝑥 ′
𝑘

=
∑

𝑒𝑘 ∈𝐸
𝑤
𝑖 𝑗

1

𝑥𝑘 · 𝑢𝑖 𝑗
=

1

𝑢𝑖 𝑗
·

∑

𝑒𝑘 ∈𝐸
𝑤
𝑖 𝑗

1

𝑥𝑘
= 1,∀𝑒𝑤𝑖 𝑗 ∈ 𝐸𝑤 . (4)

The TDM ratio of each routing edge will then be rounded to the

smallest even number not less than the current value.

5.3 Competitive-based Refinement

In the following, we call the groups that have much larger 𝑟𝑘 than
the others as critical groups. The total TDM ratio 𝑟𝑘 of a net group

Algorithm 3 Competitive-based Refinement (CR)

Require: The TDM ratio 𝑥 𝑗 of each routing edge.
Ensure: A legal and optimized TDM assignment result.

1: do

2: calculate the compression threshold 𝑡 = 𝑟𝑚𝑎𝑥 · 𝛽 ;
3: let the compression ratio 𝑐𝑖 of each net 𝑖 be∞;

4: for each 𝑔𝑟𝑝𝑘 ∈ 𝐺𝑛 do

5: 𝑐𝑖 = min(𝑐𝑖 ,
𝑡
𝑟𝑘
), ∀𝑛𝑒𝑡𝑖 ∈ 𝑁𝑘 ;

6: end for

7: for each 𝑛𝑒𝑡𝑖 ∈ 𝑁 do

8: 𝑥 𝑗 = 𝑥 𝑗 · 𝑐𝑖 , ∀𝑒 𝑗 ∈ 𝐸𝑖 ;
9: end for

10: apply legalization to each wire;

11: while the improvement in 𝑟𝑚𝑎𝑥 is not small

𝑔𝑟𝑝𝑘 is determined by the number of routing edges in it and the

TDM ratios of these edges. Without loss of generality, in a good

TDM assignment result, there should be a large number of groups

whose 𝑟𝑘 are close to 𝑟𝑚𝑎𝑥 . Otherwise, some routing edges in the

non-critical groups might have been assigned too much wire re-

sources. In such cases, we can usually transfer the wire resources

from non-critical groups to critical groups such that the TDM ratios

of the routing edges in critical groups can become smaller and the

resulted 𝑟𝑚𝑎𝑥 can be reduced. Since the basic idea of our refinement

process is that routing edges compete for wire resources , we name

our method competitive-based refinement (CR).

Details of CR are described in Algorithm 3. As shown on line 2,

the groups with 𝑟𝑘 larger than a compression target 𝑡 are regarded
as critical groups, where 𝑡 is computed as (𝑟𝑚𝑎𝑥 · 𝛽) and 𝛽 (≤ 1)

will increase based on the iteration number. On lines 4-9, the TDM

ratios of the edges in critical groups will be reduced while the others

will be increased. In other words, for the routing edges belonging

to net groups with large 𝑟𝑘 , their TDM ratios will be reduced since

more wire resources should be assigned to them. In specific, for the

routing edges in net 𝑖 , we will use a scalar 𝑐𝑖 , called compression

ratio, to change their TDM ratios such that the 𝑟𝑘 of each group

𝑘 will not exceed 𝑡 after the adjustment. However, the wire usage
constraints (

∑
𝑒𝑘 ∈𝐸

𝑤
𝑖 𝑗

1
𝑥𝑘

≤ 1) may be violated after such adjustment.

To remove these violations, the legalization method mentioned in

Section 5.2 will be applied. Note that, due to the characteristics of

our legalization method, the relative TDM ratios among different

routing edges will be maintained.

Figure 5 demonstrates the idea of Algorithm 3 in a simple ex-

ample that consists of 4 net groups sharing 6 nets. The bars with

different colors represent different nets, and the lengths of which

represent their TDM sum. Figure 5a shows the result after initial

assignment and legalization. To reduce 𝑟𝑚𝑎𝑥 , the nets in the groups

with TDM sum larger than the compression threshold 𝑡 will be
compressed (TDM ratios decrease), while the other nets will be

extended (TDM ratios increase). From Figure 5b, we can see that

net 1 − 5 are compressed while net 6 is extended. Then, the legal-

ization algorithm is performed on each wire to satisfy the wire

usage constraint. The result is shown in Figure 5c. Compared with

Figure 5a, 𝑟𝑚𝑎𝑥 in Figure 5c is reduced significantly.

180

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Dan Zheng, Xiaopeng Zhang, Chak-Wa Pui, and Evangeline F.Y. Young

Table 2: Statistics of benchmarks.

Design #FPGAs #Wires #Nets #NetGroups

synopsys01 43 214 68456 40552

synopsys02 56 157 35155 56308

synopsys03 114 350 302956 334652

synopsys04 229 1087 551956 464867

synopsys05 301 2153 881480 879145

synopsys06 410 1852 785539 910739

hidden01 73 289 54310 50417

hidden02 157 803 610675 501594

hidden03 487 2720 720520 886720

5.4 Parallel Implementation

Note that our TDM assignment algorithm can be parallelized with-

out losing any quality. In the initial assignment, the calculations

of the TDM ratio 𝑥𝑖 can be parallelized among all routing edges
since 𝑏 and |𝐸

𝑔
𝑖 | are fixed at the time of computation. In legalization,

the usage of each wire can also be obtained in parallel among all

the wires because both the routing topology and the TDM ratio of

each routing edge are determined at the time of execution. In the

competitive-based refinement, the TDM sum 𝑟𝑘 of each group 𝑘
can also be calculated in parallel. Since a net may belong to several

net groups, to avoid repeated calculation, the sum of the TDM ra-

tios of each net is first computed in parallel. The sum of the TDM

ratios of each net group can then be calculated by summing up

the TDM ratios of its nets, which can also be performed in parallel.

In our experiments, by using eight threads, our TDM assignment

algorithm can be 3X faster on average and can achieve up to 5X

speedup for some designs.

6 EXPERIMENTAL RESULT

In this work, all algorithms are implemented in C++ and tested on

a Linux workstation with an Intel Xeon 2.2GHz CPU with 20 cores

and 256GB memory.

6.1 Results on ICCAD’19 Contest Benchmarks

The ICCAD 2019 Contest benchmark [21] is used to evaluate the

performance of our algorithm. The benchmark statistics are shown

in Table 2.

In our experiment, we compare our proposed algorithm with

the state-of-the-art works [17, 22] and the winner of the ICCAD

2019 Contest. The binaries of these methods under comparison

are provided by the authors respectively, and are run in the same

computing environment of 8 threads for fair comparisons. To quan-

tify the performance, we employ the evaluation score used by the

ICCAD 2019 Contest [21], as follows:

𝑆𝑐𝑜𝑟𝑒 = 𝑟𝑚𝑎𝑥 × (log2 (
𝑥

𝑋
) × 0.01 + 1), (5)

where 𝑥 represents the runtime, while 𝑋 is the medium runtime

of all contestants, which is released by the contest organizer [21].

Note that a lower evaluation score implies a better performance.

The comparisons are shown in Table 3. We can see that our

proposed algorithm achieves the best final scores which imply

the best overall performance. Our algorithm also obtains the best

evaluation scores for most test cases. More specifically, our method

can achieve 4% better TDM ratio than the contest winner. Compared

to the state-of-the-art work [22], we can achieve more than 6×

better in run time and with comparable TDM ratio performance.

Compared to the state-of-the-art work [17], we achieve more than

2× better run time with a slightly better TDM ratio performance.

6.2 Results on New Benchmarks

For data sets without dominant groups such as case4 and case5, the

optimization is more difficult since the most critical group can vary.

In order to evaluate the performance of different methods on this

kind of benchmarks, we created four new benchmarks based on the

original benchmarks by removing the dominant group. As a result,

the number of pins in each group is close to each other. These new

benchmarks are named "original benchmark_ex".

For these new benchmarks, we compare our method with [17, 22]

and the contest winner. The results are shown in Table 4. We can

observe that our algorithm obtains better TDM ratio for each case

than the work [22] while the run time is 9× faster on average.

Compared with the work the contest winner and [17], our run time

is longer but we can produce much better TDM ratio assignment

for each case. On average, our TDM ratio performance is 11.4% and

11.3% better than that of the contest winner and [17] respectively.

7 CONCLUSION

In this work, we propose an algorithm that can produce a time-

multiplexed routing result for large scale FPGA systems. In particu-

lar, a hybrid routing algorithm is proposed to route the nets between

FPGAs, which includes maze routing and the fast MTST method.

Given the routing topology, a two-step method is used to produce

a legal TDM assignment result with optimized timing, which in-

cludes initial TDM assignment and competitive-based refinement.

Compared with the winner of the ICCAD’19 contest and the state-

of-the-art works, experimental results show that our system-level

routing and TDM assignment algorithm is effective.

REFERENCES
[1] Jonathan Babb, Russell Tessier, Matthew Dahl, Silvina Zimi Hanono, David M

Hoki, and Anant Agarwal. 1997. Logic emulation with virtual wires. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 16, 6
(1997), 609–626.

[2] Gengjie Chen, Chak-Wa Pui, Haocheng Li, and Evangeline FY Young. 2019. Dr.
CU: Detailed Routing by Sparse Grid Graph and Minimum-Area-Captured Path
Search. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (2019).

[3] Shih-Chun Chen, Richard Sun, and Yao-Wen Chang. 2018. Simultaneous parti-
tioning and signals grouping for time-division multiplexing in 2.5 D FPGA-based
systems. In IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD). 4.

[4] George A. Constantinides. 2017. FPGAs in the Cloud. In Proc. FPGA. 167–167.
[5] Scott Hauck. 1998. The roles of FPGAs in reprogrammable systems. Proc. IEEE

86, 4 (1998), 615–638.
[6] William NN Hung and Richard Sun. 2018. Challenges in Large FPGA-based

Logic Emulation Systems. In Proceedings of the 2018 International Symposium on
Physical Design. ACM, 26–33.

181

Multi-FPGA Co-optimization: Hybrid Routing and Competitive-based Time Division Multiplexing Assignment ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

Table 3: Comparison of performance with the contest winners and the state-of-the-art works.

Design
1st place [22] [17] Ours

TDM ratio Runtime(s) Score TDM ratio Runtime(s) Score TDM ratio Runtime(s) Score TDM ratio Runtime(s) Score

synopsys1 40480 0.404 39279 37084 0.915 36421 38468 1.046 38283 37132 5.062 37384

synopsys2 32008942 0.554 30910258 31646600 2.01 31148738 31666114 2.4 31540538 31740560 0.955 30900446

synopsys3 128213846 6.497 123763681 127208000 36.124 125941288 127023600 40.756 126709389 127697676 7.631 123561811

synopsys4 7048746 18.775 6831271 6191610 172.843 6198872 6227184 114.916 6218344 6263338 67.5595 6185801

synopsys5 5189460 41.398 5043829 4540370 554.065 4582874 4588410 245.177 4585094 4570334 137.299 4521130

synopsys6 15751203396 74.756 15213447930 15749700000 341.232 15556991726 15748078752 86.134 15595919905 15749653186 47.059 15106787263

hidden1 409292666 1.183 393785153 408785000 5.058 401865333 408881842 1.918 405076396 408868062 1.295 393910217

hidden2 45942083770 25.392 44181670827 45936400000 357.823 45929505449 45942167188 27.752 45429961597 45953903518 18.8128 43994213761

hidden3 4867170072 78.247 4701321836 4862190000 528.645 4830522746 4865534056 92.67 4819200323 4865357542 47.118 4663968467

Final Score 64656814064 66886793447 66419249869 64324086280

Ratio 1.041 0.845 0.997 6.11221 1.002917 2.0334 1 1

The best score in each benchmark is highlighted in bold. Score is the evaluation score computed according to Equation (5). Final Score is obtained by adding the evaluation scores of all test cases,

which is the evaluation criteria used by the ICCAD 2019 contest organizers. Ratio in the last row shows the average of the normalized TDM Ratio and Runtime (normalized based on our results).

Table 4: Comparison of performance with the state-of-the-art works based on the new test cases.

New Designs
1st place [22] [17] Ours

TDM Ratio Runtime Score TDM ratio Runtime(s) Score TDM ratio Runtime(s) Score TDM ratio Runtime(s) Score

synopsys06_ex 110232848 78.621 109211128 98851500 2428.578 102827484 110210030 95.213 109492970 98572664 203.728 99013070

hidden01_ex 5108544 1.429 5023325 4872160 7.654 4908850 5099040 1.419 5013463 4625304 8.05 4663501

hidden02_ex 66847668 26.999 65995666 62213700 871.199 64538926 66830822 33.492 66186819 60133426 97.1411 60477770

hidden03_ex 72716244 83.417 72038228 64905100 3490.989 67796452 72688214 98.28 72182408 64799604 220.117 65102506

Final Score 252268347 240071712 252875660 229256847

Ratio 1.114 0.305 1.023 9.425 1.113 0.359 1 1

Ratio in the last row shows the average of the normalized TDM Ratio and Runtime (normalized based on our results. The medium runtime is calculated based on these four methods for

Equation (5).

[7] Masato Inagi, Yuichi Nakamura, Yasuhiro Takashima, and Shin’ichi Wakabayashi.
2015. Inter-FPGA Routing for Partially Time-Multiplexing Inter-FPGA Signals
on Multi-FPGA Systems with Various Topologies. IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences 98, 12 (2015).

[8] Masato Inagi, Yasuhiro Takashima, and Yuichi Nakamura. 2009. Globally optimal
time-multiplexing in inter-FPGA connections for accelerating multi-FPGA sys-
tems. In Field Programmable Logic and Applications, 2009. FPL 2009. International
Conference on. IEEE, 212–217.

[9] Masato Inagi, Yasuhiro Takashima, and Yuichi Nakamura. 2010. Globally opti-
mal time-multiplexing of inter-FPGA connections for multi-FPGA prototyping
systems. IPSJ Transactions on System LSI Design Methodology 3 (2010), 81–90.

[10] Masato Inagi, Yasuhiro Takashima, Yuichi Nakamura, and Atsushi Takahashi.
2008. Optimal time-multiplexing in inter-FPGA connections for accelerating
multi-FPGA prototyping systems. IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences 91, 12 (2008), 3539–3547.

[11] Mohammed AS Khalid. 1999. Routing architecture and layout synthesis for multi-
FPGA systems. Ph. D. dissertation, Dept. of ECE, Univ. Toronto.

[12] Wan-Sin Kuo, Shi-Han Zhang, Wai-Kei Mak, Richard Sun, and Yoon Kah Leow.
2018. Pin Assignment Optimization for Multi-2.5 D FPGA-based Systems. In
Proceedings of the 2018 International Symposium on Physical Design. ACM, 106–
113.

[13] Andrew Ling and Jason Anderson. 2017. The Role of FPGAs in Deep Learning.
In Proc. FPGA. 3–3.

[14] Wen-Hao Liu, Wei-Chun Kao, Yih-Lang Li, and Kai-Yuan Chao. 2013. NCTU-GR
2.0: multithreaded collision-aware global routing with bounded-length maze
routing. IEEE TCAD 32, 5 (2013), 709–722.

[15] Larry McMurchie and Carl Ebeling. 2008. PathFinder: a negotiation-based
performance-driven router for FPGAs. In Reconfigurable Computing. Elsevier.

[16] Kurt Mehlhorn. 1988. A faster approximation algorithm for the Steiner problem
in graphs. Inform. Process. Lett. 27, 3 (1988), 125–128.

[17] Zou Peng, Lin Zhifeng, Shi Xiao, Wu Yingjie, Chen Jianli, Yu Jun, and Chang
Yao-Wen. 2020. Time-Division Multiplexing Based System-Level FPGA Routing
for Logic Verification. In Proceedings of the 2020 Design Automation Conferencen.

[18] Chak-Wa Pui, GangWu, Freddy Y. C. Mang, and Evangeline F. Y. Young. 2019. An
Analytical Approach for Time-DivisionMultiplexing Optimization inMulti-FPGA
based Systems. In Proc. SLIP.

[19] Chak-Wa Pui and Evangeline F. Y. Young. 2019. Lagrangian Relaxation-Based
Time-Division Multiplexing Optimization for Multi-FPGA Systems. In IEEE/ACM
International Conference on Computer-Aided Design (ICCAD).

[20] Chak-Wa Pui and Evangeline F. Y. Young. 2020. Lagrangian Relaxation-Based
Time-Division Multiplexing Optimization for Multi-FPGA Systems. ACM TO-
DAES (2020).

[21] Yu-Hsuan Su, Richard Sun, and Pei-Hsin Ho. 2019. 2019 CAD Contest: System-
level FPGA Routing with Timing Division Multiplexing Technique. In IEEE/ACM
International Conference on Computer-Aided Design (ICCAD).

[22] Lin Tung-Wei, Tai Wei-Chen, Lin Yu-Cheng, and Iris Hui-Ru Jiang. 2020. Routing
Topology and Time-Division Multiplexing Co-Optimization for Multi-FPGA
Systems. In Proceedings of the 2020 Design Automation Conferencen.

182

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

