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ABSTRACT

In multi-FPGA systems, time-division multiplexing (TDM) is a

widely used technique to transfer signals between FPGAs. While

TDM can greatly increase logic utilization, the inter-FPGA delay

will also become longer. A good time-multiplexing scheme for inter-

FPGA signals is very important for optimizing the system perfor-

mance. In this work, we propose a fast algorithm to generate high

quality time-multiplexed routing results for multiple FPGA systems.

A hybrid routing algorithm is proposed to route the nets between

FPGAs, by maze routing and by a fast minimum terminal spanning

tree method. After obtaining a routing topology, a two-step method

is applied to perform TDM assignment to optimize timing, which

includes an initial assignment and a competitive-based refinement.

Experiments show that our system-level routing and TDM assign-

ment algorithm can outperform both the top winner of the ICCAD

2019 Contest and the state-of-the-art methods. Moreover, compared

to the state-of-the-art works [17, 22], our approach has better run

time by more than 2×with better or comparable TDM performance.

1 INTRODUCTION

In recent years, systems with multiple field-programmable gate

arrays (FPGAs) become very popular in applications that require

high efficiency and frequent modifications, such as deep learn-

ing [13], data center [4], logic emulation and rapid prototyping

of large designs [5], etc. In multi-FPGA systems, different FPGAs

are connected by direct hardwired connections or programmable

interconnection networks [12].
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In multi-FPGA systems, the utilization of logic resources is lim-

ited by the routing resources between FPGAs. Time-division mul-

tiplexing (TDM) is a method that multiplexes the use of the I/O

pins and inter-FPGA wires for inter-FPGA signals [1]. Since this

technique can effectively increase the number of logical pins, the

resulting logic resource utilization can be improved. However, each

time-multiplexed signal has to wait for its turn of transmission and

the inter-FPGA delay is lengthened.

In a modern compilation flow as shown in Figure 1, the negative

effects of time-multiplexing on delay can be reduced by taking TDM

delay into account during partitioning, routing and post-routing[6].

A recent work [3] proposes a framework that performs TDM as-

signment and partitioning simultaneously, which results in much

faster system clock frequency compared to ordinary cut-driven

partitioning. There are several works that optimize TDM ratios in

the post-routing stage. TDM ratio is a metric related to the delay of

an inter-FPGA net and its definition will be described in details in

Section 2. The works [7–10] formulate the TDM assignment prob-

lem as an integer linear program (ILP), trying to put non-critical

inter-FPGA nets in TDM wires to improve logic utilization without

affecting the system timing. The works [18–20] propose a two-step

analytical framework to solve the TDM assignment problem inmod-

ern multi-FPGA systems. These works consider all the practical

TDM constraints and hence will be time consuming.

Routings for ASICs and FPGAs have been extensively studied [2,

14, 15], and many focus on wirelength reduction and removal of

design rule violations. However, in system-level routing, we need

to consider the overall performance of the whole system. For multi-

FPGA systems, not only wirelength, TDM assignment is also very

important since the system performance is largely affected by the

delay of inter-FPGA nets. A recent work [17] explored this problem

by a timing-aware ratio assignment algorithm. Another recent

work [22] performed TDM assignment by Lagrangian relaxation,

which achieved good TDM ratio but suffered from long run time.

In this work, we propose an effective algorithm that can gener-

ate time-multiplexed routing schemes for large scale multi-FPGA

systems. The major contributions are summarized as follows:

• A system-level routing and TDM assignment algorithm is

proposed to optimize timing of multi-FPGA systems, which

considers both wirelength and TDM ratios. Most parts of our
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Figure 1: A typical compilation flow for multi-FPGA sys-

tems [11] with TDM technique.

algorithms are designed to be multi-thread friendly, which

can be parallelized with little or no quality loss.

• A hybrid routing algorithm is proposed to generate the rout-

ing topology of each net. In particular, we use maze routing

to route the nets that are timing critical. The remaining nets

are routed by a fast minimum terminal spanning tree method

in parallel.

• A fast and effective two-step algorithm is proposed to deter-

mine the TDM ratio of each inter-FPGA routing edge.

• Experimental results show that our algorithm not only can

satisfy all the TDM constraints but also has better perfor-

mance than the top winner of the ICCAD 2019 Contest and

the state-of-the-art works [17][22].

The remainder of this paper is organized as follows. Section 2

gives the preliminaries of the problem. Sections 3-5 first give an

overview of our approach and then introduce the details. Section 6

shows the experiment results, and the conclusion is in Section 7.

2 PRELIMINARIES

In this section, we will first explain our target architecture. The

problem definition will then be introduced. The notations used

in the rest of this paper are shown in Table 1. Note that in our

terminology, wire refers to the connection between two FPGAs

while edge refers to the routing edge of a net. Besides, only inter-

FPGA nets are considered in our problem.

2.1 Target Architecture

We consider a multi-FPGA systemwith time-multiplexed hardwired

inter-FPGA connections where two FPGAs are adjacent logically

if they are directly connected in the system. In our target system,

two adjacent FPGAs are called an FPGA-pair.

Since the number of nets is much larger than the number of

physical wires between FPGAs, time-multiplexed wires are used

to connect different FPGAs. In such systems, each inter-FPGA net

is assigned a TDM ratio that represents how many other nets are

sharing one physical wire with this net. Only the nets in the same

direction and with the same TDM ratio can be assigned to the same

physical wire. When estimating the delay of a signal in our target

architecture, the worst case scenario is assumed, i.e., an inter-FPGA

signal needs to wait for an entire TDM cycle for its turn to be

Table 1: Notations

𝑒𝑖 The routing edge 𝑖 in the routing graph.

𝐸𝑖 The set of routing edges of net 𝑖 .

𝐸𝑤𝑖 𝑗 The set of routing edges through wire 𝑒𝑤𝑖 𝑗 .

𝐸
𝑔
𝑖 The set of routing edges belonging to net group 𝑖 , which

is
⋃

𝑛𝑒𝑡 𝑗 ∈𝑁𝑖
𝐸 𝑗 .

𝑒𝑤𝑖 𝑗 The wire between FPGA 𝑖 and FPGA 𝑗 .

𝐸𝑤 The set of wires of the FPGA system.

𝑥𝑖 The TDM ratio of edge 𝑒𝑖 .

𝐺𝑛 The set of net groups.

𝑁𝑖 The set of nets in net group 𝑖 .

𝑁 The set of all nets.

𝑢𝑖 𝑗 The usage of wire 𝑒𝑤𝑖 𝑗 , which is
∑
𝑒𝑘 ∈𝐸

𝑤
𝑖 𝑗

1
𝑥𝑘

𝑟𝑘 The total TDM ratio of the routing edges in net group 𝑘
and 𝑟𝑘 =

∑
𝑛𝑒𝑡 𝑗 ∈𝑁𝑘

∑
𝑒𝑖 ∈𝐸 𝑗

𝑥𝑖 .

𝑟𝑚𝑎𝑥 The maximum total TDM ratio of all net groups such that

𝑟𝑚𝑎𝑥 = max𝑔𝑟𝑝𝑘 ∈𝐺𝑛 (𝑟𝑘 ).

transmitted. Hence, the transmission delay is proportional to the

TDM ratio of the wire. Due to architectural limitations, a TDM ratio

can only be an even number in this work.

2.2 Problem Definition

In system-level routing, given a netlist and the FPGA-connectivity,

we need to decide the routing topology of each net and estimate

a TDM ratio of each inter-FPGA edge such that the system per-

formance is maximized. To optimize timing, the total delay of the

most critical signal paths in the netlist should be minimized. To

model this, a number of net groups are defined, and each net group

represents the set of nets on a critical path. Note that, every net

belongs to at least one group. Since the delay of a signal path is

mostly determined by the delays of the inter-FPGA signals on the

path, it can be estimated by the total TDM ratio of the nets in the

corresponding net group. A metric called maximum group TDM

sum 𝑟𝑚𝑎𝑥 is defined and is the objective to be minimized, as shown

in Equations (1b)–(1c). In practice, the TDM ratios should satisfy all

the constraints mentioned in Section 2.1. However, in system-level

routing, we need a very fast method to estimate the timing of a

routing solution, which can then be used to provide feedback for

the partitioning step or the routing step. Therefore, in our prob-

lem formulation, as shown below in Equation (1), the limit on the

actual number of physical wires in an FPGA-pair is modelled by

Equation (1d), based on the number of nets between the FPGA-pair
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Figure 2: An example of the system-level routing problem.

and their TDM ratios.

min 𝑟𝑚𝑎𝑥 (1a)

𝑠 .𝑡 . 𝑟𝑘 =
∑

𝑛𝑒𝑡𝑖 ∈𝑁𝑘

∑

𝑒 𝑗 ∈𝐸𝑖

𝑥 𝑗 , ∀𝑔𝑟𝑝𝑘 ∈ 𝐺𝑛 (1b)

𝑟𝑚𝑎𝑥 = max
𝑔𝑟𝑝𝑘 ∈𝐺𝑛

𝑟𝑘 (1c)

∑

𝑒𝑘 ∈𝐸
𝑤
𝑖 𝑗

1

𝑥𝑘
≤ 1, ∀𝑒𝑤𝑖 𝑗 ∈ 𝐸𝑤 (1d)

𝑥𝑘 is an even number (1e)

Every net is connected by its routing edges. (1f)

An example is shown in Figure 2. In this example, the black

lines denote the connections between FPGAs, while the blue, green

and red lines represent three nets, 𝑛𝑒𝑡1, 𝑛𝑒𝑡2 and 𝑛𝑒𝑡3 respectively.
There are three net groups: 𝑔𝑟𝑝1 contains 𝑛𝑒𝑡1, 𝑔𝑟𝑝2 contains 𝑛𝑒𝑡2
and 𝑛𝑒𝑡3, and 𝑔𝑟𝑝3 contains 𝑛𝑒𝑡3. Given the routing scheme in

Figure 2a, the optimal TDMassignmentwill result in 𝑟𝑚𝑎𝑥 = 𝑟𝑔𝑟𝑝1 =
2 + 2 + 4 = 8. However, if we move the routing edge of 𝑛𝑒𝑡1 from
𝑒𝑤3,5 to 𝑒𝑤1,5 (Figure 2b), according to the wire usage constraints

(𝑢𝑖 𝑗 =
∑
𝑒𝑘 ∈𝐸

𝑤
𝑖 𝑗

1
𝑥𝑘

≤ 1), the TDM ratio of the edge of 𝑛𝑒𝑡2 between

FPGA3 and FPGA5 can be reduced from 4 to 2. As a result, the

optimal 𝑟𝑚𝑎𝑥 (𝑟𝑚𝑎𝑥 = 𝑟𝑔𝑟𝑝1 = 2 + 2 + 2 = 6) can be reduced to 6.

3 OVERVIEW

The overall flow of our algorithm, as shown in Figure 3, can be di-

vided into two parts, routing and TDM assignment. During routing,

the routing topology is generated such that the pins of each net

are connected and the routing edges are distributed evenly among

the connections between FPGAs. Given the routing result, we will

determine the TDM ratio of each routing edge such that 𝑟𝑚𝑎𝑥 is

minimized. To be specific, a fast and effective method is first applied

to assign an initial TDM ratio for each routing edge such that the

resulted 𝑟𝑚𝑎𝑥 is relatively good. Legalization is then performed

to remove all constraint violations while disturbance to the initial

assignment result is minimized. Finally, the TDM ratios will be

further refined.

4 ROUTING

Given a netlist and the connections between the FPGAs, we need

to find the routing topology of each net. As can be seen from Equa-

tion (1), both routing congestion and long wirelength will result in

a large 𝑟𝑚𝑎𝑥 . To balance routing congestion and wirelength, we set

the cost of routing through a wire 𝑒𝑤𝑝𝑞 as in Equation (2).

𝑐𝑜𝑠𝑡𝑝𝑞 =
|𝐸𝑤𝑝𝑞 | · |𝐸

𝑤 |
∑
𝑒𝑤𝑖 𝑗 ∈𝐸

𝑤 |𝐸𝑤𝑖 𝑗 |
+𝐶, (2)

Hybrid Routing Nets

Initial Assignment and Legalization

Competitive-based Refinement

Routing & TDM Assignment Result

FPGA Connections Net Groups Netlist

System-Level Routing with TDM

Figure 3: Overall flow of our system-level routing and TDM

assignment algorithm.

In Equation (2), the first item reflects congestion and is computed

as the ratio between the number of routing edges on wire 𝑒𝑤𝑝𝑞 and
the average number of routing edges on each wire. If this number

is less than one, the wire is not congested and the cost of routing

on this wire is small. The second term 𝐶 is used to prevent long

path length, which is set to be 105 in our implementation.

In our routing algorithm, all the routing groups will be classified

as dominant groups or non-dominant groups according to the follow-

ing procedure. First of all, all the routing groups will be sorted in a

non-descending order of their total numbers of pins. The smallest

index 𝑖 is found such that the 𝑖𝑡ℎ group in this sorted list has its

number of pins less than a fraction 1
𝑎 of that of the (𝑖 + 1)𝑡ℎ group.

Then all the groups with indexes 𝑖 + 1 or above will be classified
as dominant groups while others are non-dominant groups. In our

implementation, the parameter 𝑎 is set to 50. A dominant group

will have many more pins than any non-dominant group. In our

hybrid routing algorithm, we will first find the dominant and non-

dominant groups according to their numbers of pins. To route all

the nets, we have two schemes: maze routing and fast minimum

terminal spanning tree (MTST) method. Since the nets in domi-

nant groups are more timing critical, they are first routed using

maze routing, which can achieve better quality compared to the

fast MTST method. The rest of the nets are then routed by the fast

MTST method, which can effectively speed up the routing process

with little quality loss. Details of these two routing approaches will

be discussed in the following sections.

4.1 Maze Routing

Maze routing is a widely adopted method [2, 14, 15] for its high

flexibility and routability. In this work, we adopt the maze routing

scheme from an open-source detailed router called Dr.CU [2]. For a

multi-pin net, path search starts from a source pin. When reaching

the first unvisited pin, all vertices on the path are regarded as source

for searching the next unvisited pin, until all the pins are reached.
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Algorithm 1 Fast MTST Method

Require: Non-dominant nets and the routing graph.

Ensure: Every non-dominant net is connected by its routing edges.

1: evenly divide all nets into𝑚 batches in a random manner;

2: for each batch do

3: find the shortest paths of all FPGA pairs;

4: for each 𝑛𝑒𝑡𝑖 in the batch do
5: construct a complete graph 𝑔𝑐 for the pins of 𝑛𝑒𝑡𝑖 ;
6: find an MST in 𝑔𝑐 ;
7: unfold the MST edges into the corresponding shortest

paths found on line 3;

8: end for

9: update the wire usages;

10: end for

4.2 Fast MTST Method

The nets belonging to non-dominant groups are named non-dominant

nets. Compared to those in dominant groups, non-dominant nets

have little impact on the objective value. Instead of using maze

routing, we adopt a more efficient scheme called fast MTST, which

is inspired by MTST [16]. We also propose a multi-threaded scheme

to find a Steiner minimum tree (SMT) in a general graph quickly.

Compared to the original MTST, our fast MTST is more compatible

with multi-threaded implementation.

Algorithm 1 shows the details of our fast MTSTmethod. First, the

non-dominant nets are evenly divided into𝑚 batches in a random

manner. For each batch, we use the Floyd-Warshall algorithm to

find the shortest path between every FPGA pair in the system. As

shown on lines 5-7, for each net in the batch, we will first construct

a complete graph 𝑔𝑐 of its pins and the edge weight is set to be
the cost of the shortest path between the corresponding FPGA pair

obtained by the Floyd-Warshall algorithm. A minimum spanning

tree (MST) is then found on 𝑔𝑐 , and the edges in the MST will be

unfolded into their corresponding shortest paths. Note that, after

unfolding, repeated routing edges will be eliminated.

Figure 4 gives an example of our fast MTST method. As shown

in Figure 4a and 4b, the shortest paths of all the FPGA pairs are

found and recorded. Given a net with three pins (F1, F3, and F8), a

complete graph is constructed from the result of Figure 4b. An MST

is then constructed on the complete graph, which is shown as blue

lines in Figure 4c. Finally, the edges on the MST are unfolded into

their corresponding shortest paths and repeated edges (between F3

and F6 in Figure 4d) are removed.

4.3 Parallel Implementation

Most parts of our routing algorithm can be parallelized with little

quality degradation. For the dominant nets, maze routing can be

parallelized among different nets but the wire usage should be

updated in a synchronized manner. For the non-dominant nets, the

batches are executed sequentially but the Steiner tree construction

within the same batch can be parallelized. For each batch, the wire

usage will be updated after the routing edges of all the nets are

found. In our experiments, by using 8 threads, our routing algorithm

can be 3X faster on average and can achieve up to 6X speedup in

some designs. Besides, compared to the original MTST [16] in the

F1 F2 F3

F4 F5 F6

F7 F8 F9

1 9

2

1

3 2

1
3 1

2 1

4

(a)

F1 F2 F3

F4 F5 F6

F7 F8 F9

1

6

2 3 4

3
5

5

(b)

F2

F4 F5 F6

F7 F9

5

46

F1-F2-F5-F6-F3

F3-F6-F9-F8F1-F4-F7-F8

F1 F3

F8

(c)

F1 F2 F3

F4 F5 F6

F7 F8 F9

1 9

2

1

3 2

1
3 1

2 1

4

(d)

Figure 4: An example of the fast MTST method. (a) shows 9

FPGAs and the weights of the wires. (b) shows the shortest

paths between F1 and the other FPGAs. (c) shows the com-

plete graph constructed from (a) and the resulted MST. (d)

shows the unfolded paths of the MST in (c).

same environment of 8 threads, our fast MTST has better run time

by 1.9X with the same quality.

5 TDM ASSIGNMENT

5.1 Initial Assignment

Since the objective is to minimize 𝑟𝑚𝑎𝑥 which is the maximum TDM

sum 𝑟𝑘 among all the net groups, our method will calculate the

TDM ratio of each routing edge from the net groups’ perspective.

Details of our initial assignment are shown in Algorithm 2. In

our algorithm, there is a target TDM sum 𝑏, which represents the
estimated 𝑟𝑚𝑎𝑥 and will guide the TDM assignment of each routing

edge. To initialize the TDM ratio of each routing edge, wewill set the

initial TDM sum target 𝑏 to a large number, which is 5 × 107 in our

implementation. On lines 5-7, we first assume that the routing edges

in the same net group 𝑔𝑟𝑝𝑖 have the same TDM ratio (𝑥
𝑔
𝑖 = 𝑏

|𝐸
𝑔
𝑖 |
).

However, for routing edges belonging to several net groups, the 𝑥
𝑔
𝑖

of those groups may vary. To minimize 𝑟𝑚𝑎𝑥 , the TDM ratio of each

routing edge is set to be the minimum 𝑥
𝑔
𝑖 of the groups it belongs

to. As shown on line 9, the target TDM sum 𝑏 will be multiplied
by the average usage of the wires at each iteration such that the

usage of each wire will gradually converge to one. According to

the experimental results, our algorithm usually converges in two

iterations and the resulted 𝑟𝑚𝑎𝑥 is relatively good compared with

the 𝑟𝑚𝑎𝑥 obtained in the first iteration.

5.2 Legalization

After the initial assignment step, a TDM ratio of integral type will

have been assigned to each routing edge, which might not be a legal

assignment according to the problem formulation (Section 2.2). A
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Algorithm 2 Initial Assignment

Require: The routing topology.

Ensure: An optimized and almost legalized TDM assignment re-

sult.

1: let the TDM ratio 𝑥 𝑗 of each routing edge be∞;

2: let the TDM sum target 𝑏 be a large number;
3: let the threshold 𝜎 be a small number;

4: do

5: for each 𝑔𝑟𝑝𝑖 ∈ 𝐺𝑛 do

6: 𝑥 𝑗 = min(𝑥 𝑗 ,
𝑏
|𝐸

𝑔
𝑖 |
), ∀𝑒 𝑗 ∈ 𝐸

𝑔
𝑖 ;

7: end for

8: 𝑢𝑝𝑞 =
∑
𝑒𝑘 ∈𝐸

𝑤
𝑝𝑞

1
𝑥𝑘
, ∀𝑒𝑤𝑝𝑞 ∈ 𝐸𝑤 ;

9: 𝑏 = 𝑏 ·

∑
𝑒𝑤𝑖 𝑗 ∈𝐸

𝑤 𝑢𝑖 𝑗

|𝐸𝑤 |
;

10: while ∃𝑒𝑤𝑝𝑞 ∈ 𝐸𝑤 , |𝑢𝑝𝑞 − 1| > 𝜎

net1

net1 net2 net3

net4

net4
net5

net6Group 4

Group 3

Group 2

Group 1 e

e

Compression 
threshold

(a) Initial TDM sums and the target.

net1

net1 net2 net3

net4

net4
net5

net6Group 4

Group 3

Group 2

Group 1

Compression 
threshold

(b) The large groups are compressed.

net1

net1 net2 net3

net4

net4
net5

net6Group 4

Group 3

Group 2

Group 1

New compression 
threshold

(c) All groups are enlarged by legalization.

Figure 5: Examples of the CR algorithm.

legal assignment requires that the TDM ratios must be even num-

bers and the wire usage constraints (𝑢𝑖 𝑗 =
∑
𝑒𝑘 ∈𝐸

𝑤
𝑖 𝑗

1
𝑥𝑘

≤ 1) must

be satisfied. The assignment will be legalized in the legalization

step. The TDM ratio of each routing edge is first scaled linearly by

multiplying with the usage of the wire 𝑢𝑖 𝑗 as shown in Equation (3).

𝑥 ′𝑘 = 𝑥𝑘 · 𝑢𝑖 𝑗 , ∀𝑒𝑘 ∈ 𝐸𝑤𝑖 𝑗 ,∀𝑒
𝑤
𝑖 𝑗 ∈ 𝐸𝑤 . (3)

After scaling, the usage of each wire will be exactly one, satisfying

the wire usage constraint:
∑

𝑒𝑘 ∈𝐸
𝑤
𝑖 𝑗

1

𝑥 ′
𝑘

=
∑

𝑒𝑘 ∈𝐸
𝑤
𝑖 𝑗

1

𝑥𝑘 · 𝑢𝑖 𝑗
=

1

𝑢𝑖 𝑗
·

∑

𝑒𝑘 ∈𝐸
𝑤
𝑖 𝑗

1

𝑥𝑘
= 1,∀𝑒𝑤𝑖 𝑗 ∈ 𝐸𝑤 . (4)

The TDM ratio of each routing edge will then be rounded to the

smallest even number not less than the current value.

5.3 Competitive-based Refinement

In the following, we call the groups that have much larger 𝑟𝑘 than
the others as critical groups. The total TDM ratio 𝑟𝑘 of a net group

Algorithm 3 Competitive-based Refinement (CR)

Require: The TDM ratio 𝑥 𝑗 of each routing edge.
Ensure: A legal and optimized TDM assignment result.

1: do

2: calculate the compression threshold 𝑡 = 𝑟𝑚𝑎𝑥 · 𝛽 ;
3: let the compression ratio 𝑐𝑖 of each net 𝑖 be∞;

4: for each 𝑔𝑟𝑝𝑘 ∈ 𝐺𝑛 do

5: 𝑐𝑖 = min(𝑐𝑖 ,
𝑡
𝑟𝑘
), ∀𝑛𝑒𝑡𝑖 ∈ 𝑁𝑘 ;

6: end for

7: for each 𝑛𝑒𝑡𝑖 ∈ 𝑁 do

8: 𝑥 𝑗 = 𝑥 𝑗 · 𝑐𝑖 , ∀𝑒 𝑗 ∈ 𝐸𝑖 ;
9: end for

10: apply legalization to each wire;

11: while the improvement in 𝑟𝑚𝑎𝑥 is not small

𝑔𝑟𝑝𝑘 is determined by the number of routing edges in it and the

TDM ratios of these edges. Without loss of generality, in a good

TDM assignment result, there should be a large number of groups

whose 𝑟𝑘 are close to 𝑟𝑚𝑎𝑥 . Otherwise, some routing edges in the

non-critical groups might have been assigned too much wire re-

sources. In such cases, we can usually transfer the wire resources

from non-critical groups to critical groups such that the TDM ratios

of the routing edges in critical groups can become smaller and the

resulted 𝑟𝑚𝑎𝑥 can be reduced. Since the basic idea of our refinement

process is that routing edges compete for wire resources , we name

our method competitive-based refinement (CR).

Details of CR are described in Algorithm 3. As shown on line 2,

the groups with 𝑟𝑘 larger than a compression target 𝑡 are regarded
as critical groups, where 𝑡 is computed as (𝑟𝑚𝑎𝑥 · 𝛽) and 𝛽 (≤ 1)

will increase based on the iteration number. On lines 4-9, the TDM

ratios of the edges in critical groups will be reduced while the others

will be increased. In other words, for the routing edges belonging

to net groups with large 𝑟𝑘 , their TDM ratios will be reduced since

more wire resources should be assigned to them. In specific, for the

routing edges in net 𝑖 , we will use a scalar 𝑐𝑖 , called compression

ratio, to change their TDM ratios such that the 𝑟𝑘 of each group

𝑘 will not exceed 𝑡 after the adjustment. However, the wire usage
constraints (

∑
𝑒𝑘 ∈𝐸

𝑤
𝑖 𝑗

1
𝑥𝑘

≤ 1) may be violated after such adjustment.

To remove these violations, the legalization method mentioned in

Section 5.2 will be applied. Note that, due to the characteristics of

our legalization method, the relative TDM ratios among different

routing edges will be maintained.

Figure 5 demonstrates the idea of Algorithm 3 in a simple ex-

ample that consists of 4 net groups sharing 6 nets. The bars with

different colors represent different nets, and the lengths of which

represent their TDM sum. Figure 5a shows the result after initial

assignment and legalization. To reduce 𝑟𝑚𝑎𝑥 , the nets in the groups

with TDM sum larger than the compression threshold 𝑡 will be
compressed (TDM ratios decrease), while the other nets will be

extended (TDM ratios increase). From Figure 5b, we can see that

net 1 − 5 are compressed while net 6 is extended. Then, the legal-

ization algorithm is performed on each wire to satisfy the wire

usage constraint. The result is shown in Figure 5c. Compared with

Figure 5a, 𝑟𝑚𝑎𝑥 in Figure 5c is reduced significantly.
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Table 2: Statistics of benchmarks.

Design #FPGAs #Wires #Nets #NetGroups

synopsys01 43 214 68456 40552

synopsys02 56 157 35155 56308

synopsys03 114 350 302956 334652

synopsys04 229 1087 551956 464867

synopsys05 301 2153 881480 879145

synopsys06 410 1852 785539 910739

hidden01 73 289 54310 50417

hidden02 157 803 610675 501594

hidden03 487 2720 720520 886720

5.4 Parallel Implementation

Note that our TDM assignment algorithm can be parallelized with-

out losing any quality. In the initial assignment, the calculations

of the TDM ratio 𝑥𝑖 can be parallelized among all routing edges
since 𝑏 and |𝐸

𝑔
𝑖 | are fixed at the time of computation. In legalization,

the usage of each wire can also be obtained in parallel among all

the wires because both the routing topology and the TDM ratio of

each routing edge are determined at the time of execution. In the

competitive-based refinement, the TDM sum 𝑟𝑘 of each group 𝑘
can also be calculated in parallel. Since a net may belong to several

net groups, to avoid repeated calculation, the sum of the TDM ra-

tios of each net is first computed in parallel. The sum of the TDM

ratios of each net group can then be calculated by summing up

the TDM ratios of its nets, which can also be performed in parallel.

In our experiments, by using eight threads, our TDM assignment

algorithm can be 3X faster on average and can achieve up to 5X

speedup for some designs.

6 EXPERIMENTAL RESULT

In this work, all algorithms are implemented in C++ and tested on

a Linux workstation with an Intel Xeon 2.2GHz CPU with 20 cores

and 256GB memory.

6.1 Results on ICCAD’19 Contest Benchmarks

The ICCAD 2019 Contest benchmark [21] is used to evaluate the

performance of our algorithm. The benchmark statistics are shown

in Table 2.

In our experiment, we compare our proposed algorithm with

the state-of-the-art works [17, 22] and the winner of the ICCAD

2019 Contest. The binaries of these methods under comparison

are provided by the authors respectively, and are run in the same

computing environment of 8 threads for fair comparisons. To quan-

tify the performance, we employ the evaluation score used by the

ICCAD 2019 Contest [21], as follows:

𝑆𝑐𝑜𝑟𝑒 = 𝑟𝑚𝑎𝑥 × (log2 (
𝑥

𝑋
) × 0.01 + 1), (5)

where 𝑥 represents the runtime, while 𝑋 is the medium runtime

of all contestants, which is released by the contest organizer [21].

Note that a lower evaluation score implies a better performance.

The comparisons are shown in Table 3. We can see that our

proposed algorithm achieves the best final scores which imply

the best overall performance. Our algorithm also obtains the best

evaluation scores for most test cases. More specifically, our method

can achieve 4% better TDM ratio than the contest winner. Compared

to the state-of-the-art work [22], we can achieve more than 6×

better in run time and with comparable TDM ratio performance.

Compared to the state-of-the-art work [17], we achieve more than

2× better run time with a slightly better TDM ratio performance.

6.2 Results on New Benchmarks

For data sets without dominant groups such as case4 and case5, the

optimization is more difficult since the most critical group can vary.

In order to evaluate the performance of different methods on this

kind of benchmarks, we created four new benchmarks based on the

original benchmarks by removing the dominant group. As a result,

the number of pins in each group is close to each other. These new

benchmarks are named "original benchmark_ex".

For these new benchmarks, we compare our method with [17, 22]

and the contest winner. The results are shown in Table 4. We can

observe that our algorithm obtains better TDM ratio for each case

than the work [22] while the run time is 9× faster on average.

Compared with the work the contest winner and [17], our run time

is longer but we can produce much better TDM ratio assignment

for each case. On average, our TDM ratio performance is 11.4% and

11.3% better than that of the contest winner and [17] respectively.

7 CONCLUSION

In this work, we propose an algorithm that can produce a time-

multiplexed routing result for large scale FPGA systems. In particu-

lar, a hybrid routing algorithm is proposed to route the nets between

FPGAs, which includes maze routing and the fast MTST method.

Given the routing topology, a two-step method is used to produce

a legal TDM assignment result with optimized timing, which in-

cludes initial TDM assignment and competitive-based refinement.

Compared with the winner of the ICCAD’19 contest and the state-

of-the-art works, experimental results show that our system-level

routing and TDM assignment algorithm is effective.
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