
Heterogeneous Graph Neural Network-based Imitation
Learning for Gate Sizing Acceleration

Xinyi Zhou
The Chinese University of Hong Kong

Hong Kong, China
1155165857@link.cuhk.edu.hk

Junjie Ye∗
Huawei Noah’s Ark Lab

Shenzhen, China
yejunjie4@huawei.com

Chak-Wa Pui
Huawei Noah’s Ark Lab

Shenzhen, China
puichakwa@huawei.com

Kun Shao
Huawei Noah’s Ark Lab

Beijing, China
shaokun2@huawei.com

Guangliang Zhang
HiSilicon

Shenzhen, China
zhangguangliang@hisilicon.com

Bin Wang
Huawei Noah’s Ark Lab

Beijing, China
wangbin158@huawei.com

Jianye Hao
Huawei Noah’s Ark Lab

Beijing, China
Tianjin University
Tianjin, China

haojianye@huawei.com

Guangyong Chen∗
Zhejiang Lab

Hangzhou, China
gychen@zhejianglab.com

Pheng Ann Heng
The Chinese University of Hong Kong

Hong Kong, China
pheng@cse.cuhk.edu.hk

ABSTRACT
Gate Sizing is an important step in logic synthesis, where the cells
are resized to optimize metrics such as area, timing, power, leak-
age, etc. In this work, we consider the gate sizing problem for
leakage power optimization with timing constraints. Lagrangian
Relaxation is a widely employed optimization method for gate
sizing problems. We accelerate Lagrangian Relaxation-based algo-
rithms by narrowing down the range of cells to resize. In particu-
lar, we formulate a heterogeneous directed graph to represent the
timing graph, propose a heterogeneous graph neural network as
the encoder, and train in the way of imitation learning to mimic
the selection behavior of each iteration in Lagrangian Relaxation.
This network is used to predict the set of cells that need to be
changed during the optimization process of Lagrangian Relaxation.
Experiments show that our accelerated gate sizer could achieve
comparable performance to the baseline with an average of 22.5%
runtime reduction.

1 INTRODUCTION
As technologies evolve, constraints such as design rules, power,
routability, heat disputation are becoming much more difficult to
solve during the physical design stage. "Shift-left" suggests that
circuit constraints and performance should be considered in earlier

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9217-4/22/10. . . $15.00
https://doi.org/10.1145/3508352.3549361

stages of circuit design [1]. Logic synthesis, which converts an ab-
stract specification of desired circuit behavior into a netlist of logic
gates, is proven to be an important step to address congestion [2],
aging [3], power [4] in the "shift left" paradigm.

In ASIC design flow, the netlist generated by logic synthesis con-
sists of logic gates such as combinatorial cells, registers, memories,
IP cores, etc. Since each logic gate has several implementations cor-
responding to different characteristics (such as area, leakage power,
timing, etc), the type selection of each logic gate will greatly affect
the power, performance, and area (PPA) of the later stages. Besides
the technology mapping step, gate sizing is another important step
to optimize the type of each logic gate. Unlike technology mapping
where the netlist is still under conversion, gate sizing operates in
a completely converted netlist, which ensures that the optimized
PPA has a higher correlation to the actual one.

Due to the discrete gate versions, the gate sizing problem is an
NP-hard combinatorial optimization problem [5]. In the past few
decades, methods such as approximate algorithms, heuristics have
been studied extensively in academics to avoid exploring the ex-
ponential solution space. Existing traditional algorithms for gate
sizing problems are based on various techniques, including geomet-
ric programming (GP) [6], dynamic programming (DP) [7], greedy
heuristics [8] and Lagrangian relaxation (LR) [9–11]. Among these
methods, LR-based algorithms show superior performance as they
conduct global optimization and prune the search space by Karush-
Kuhn-Tucker(KKT) conditions. In the classic and pioneer work [9],
gate version and threshold voltage are assigned to each gate sequen-
tially to minimize leakage power under the given timing closure.
The problem is formulated as an optimization problem solved by LR.
Due to the long runtime for global evaluation, local lambda delay
is used as the cost for gate type selection. Various works based on
the same framework are proposed later with improvement on con-
verging speed [10], multi-thread enablement [11], asynchronous
circuit support [12], etc. However, scanning the entire circuit in

https://doi.org/10.1145/3508352.3549361

0 10 20 30 40 50 60
Iteration

0

5

10

15

20

25
Pe

rc
en

ta
ge

0 to -138
-138 to -554
-554 to -1386
-1386 to -2772

Gate Slack

Figure 1: The percentage of gates changed by LR on the
benchmark des_perf (fast) in ISPD 2013 Contest.

each LR iteration makes it slow for large designs, especially when
more and more types are provided in the cell library for the same
functionality, resulting in even longer time for LR-based methods
to converge.

In recent years, machine learning (ML) has been applied to either
improving or completely substituting the traditional methods in
EDA, such as congestion estimation [13], detail routing [14], place-
ment [15], testing [16], design for manufacture [17], etc. In particu-
lar, a recent work [18] proposed a novel end-to-end reinforcement
learning (RL) framework to solve the gate sizing problem that fo-
cuses on the post-route stage. It uses a graph neural network (GNN)
to encode the features of a gate as states and considers the total
negative slack (TNS) gain as the reward of changing its type.

Our method aims to speed up LR-based algorithms and is moti-
vated by an empirical observation that only a small percentage
of gates are changed by LR in each iteration. See Figure 1 for
an example. The total number of changed gates declines quickly
and falls below 5% after 10 iterations, which implies considerable
room for runtime improvement by filtering out gates that are un-
likely to be changed when scanning. This motivates us to speed
up LR-based methods by narrowing down the candidate set for
resizing, which works in an orthogonal direction to the previous
works [10, 11, 19]. In particular, we present a heterogeneous graph
neural network (HGNN)-based imitation learning [20] method to
accelerate LR-based gate sizing algorithms. We use the HGNN to
encode the circuit state and predict the cells to be changed for
each iteration by mimicking the LR-based method. We evaluate our
method by comparing it with the open-source method proposed
in [9]. Our contributions can be summarized as follows.
• A novel heterogeneous directed graph is used to represent
the timing graph, which includes timing arcs, nets, pins, and
cells. A heterogeneous graph neural network is proposed to
encode the state of the circuit and each gate.
• We treat the LR-based algorithm as the expert to demonstrate
the desired behavior and train our model with imitation
learning. The gates that are unlikely to be changed by the
LR-based method are filtered accurately in each iteration.
• Experimental results verify that our method can reduce the
runtime while preserving the effectiveness and generaliza-
tion of the original algorithm. With the network only trained
on 4 small benchmarks of the ISPD 2013 benchmarks [21], it
is capable to transfer to unseen circuit graphs with different
topologies and larger scales.

The rest of the paper is organized as follows. In Section 2, prelim-
inaries about the baseline algorithm, HGNN, and imitation learning
are introduced. Section 3 presents our proposed HGNN model and
the integrated sizer. Section 4 reports our experimental results. We
finally conclude the paper in Section 5.

2 PRELIMINARIES
2.1 Lagrangian Relaxation-based Gate Sizing
Given a netlist and the timing closure, the gate sizing problem is
to determine the cell type of each logic gate such that the target
metrics are optimized. As mentioned in Section 1, Lagrangian Re-
laxation is widely used in gate sizing. In this section, we will use
the implementation in [9] to illustrate the LR-based gate sizing,
which is also the baseline of our method. Given leakage power as
the objective, the gate sizing problem is formulated as follows.

PP : minimize leakaдe (1a)
s.t. ai + di→j ≤ aj ∀arci→j (1b)

ak ≤ qk for each path endpoint nk (1c)

In Equation (1), ai is the arrival time at node ni , di→j is the delay of
the timing arc arci→j connecting ni and nj , and qk is the required
time at nk . Equations (1b) and (1c) represent how the arrival time
is propagated in the timing graph and constrained by the timing
closure set by users. Note that, the delay of a net is assumed to be
zero in this formulation.

Following the LR procedure, we introduce a non-negative vari-
able called Lagrange multiplier (LM) for each constraint and move
them to the objective function. After such transformation, the
original problem is converted to Lagrangian relaxation subprob-
lems (LRS) associated with the LMs (λ). By applying the KKT con-
ditions to the LRS, it can be further simplified as shown in Equa-
tion (2).

LRS/(λ) : minimize leakaдe +
∑

λi→jdi→j . (2)

LetQ(λ) denote the optimal value of the problem LRS/(λ). The
Lagrangian dual problem (LDP) is as follows.

LDP : maximize Q(λ) (3)

By iteratively updating λ, the objective is gradually optimized while
the constraint violations will be minimized. To model the timing
violation induced by each arc, λs are updated as follow:

λi→j = λi→j ×

{
(1 + aj−qj

T)
1
α aj ≥ qj

(1 + qj−aj
T)−α aj < qj

, (4)

whereT is the clock period and α is a positive hyper-parameter. As
discussed above, only the LMs that satisfy the KKT conditions need
to be considered, which is ensured by a procedure called projection
after updating the LMs. Given the LMs at each iteration, a greedy
algorithm is adopted to optimized LRS/(λ). To be specific, each
logic gate in the circuit is scanned in topological order, where the
best type of each gate is selected sequentially. When selecting the
type of each gate, the following metrics are considered: (1) the
change in load violations, slack violations, and slew violations, (2)
the sum of lambda delay in the local graph. The cell type that has
the least violations and biggest gain will be selected.

2

2.2 Heterogeneous Graph Neural Network
GNNs are neural networks that deal with graph-structured data
and typically take graphs and possible node/edge features as in-
put. In general, GNNs fall into two categories, namely spectral
approaches and non-spectral approaches. Spectral approaches [22]
work with a spectral representation of the graphs, and conduct
the convolution operation in the Fourier domain by computing the
eigen-decomposition of the graph Laplacian. While non-spectral
approaches [23] operate on groups of spatially close neighbors,
and aggregate features from a node’s local neighborhoods. In each
iteration, the representation of a node is updated by combining its
own representation with the representation aggregated from its
neighbors. After L iterations, each nodev collects information from
nodes with distance at most L from v .

Besides simple graphs whose nodes and edges are of the same
type, tremendous real world graphs consist of nodes and edges of
different types, which are known as heterogeneous graphs. Het-
erogeneous graph neural networks are special GNNs designed for
heterogeneous graphs. To deal with heterogeneity, one approach
is to use different weight matrices and encoding schema for differ-
ent types of nodes and edges [24]. Another approach converts a
heterogeneous graph to multiple homogeneous graphs by utilizing
meta-path whose endpoints have the same type but are not directly
linked in the original heterogeneous graph [25].

2.3 Imitation Learning
RL [26] is a powerful machine learning technique that trains an
agent through its interaction with the environment, and has shown
its ability to solve complex problems in recent years [27, 28]. Given a
state of environment, the agent learns a policy to choose an action to
maximize the cumulative rewards returned from the environment.

As an approach related to RL, imitation learning learns a policy
by mimicking the demonstration of an expert instead of learning
from scratch through interaction. In imitation learning, an expert
gives examples of state and action pairs. The policy is then trained
in supervised manner with the expert’s action as the label [29].
The policy training could be further refined by various techniques,
including querying an interactive expert for the action at present
state during training [30] or learning the unknown reward func-
tion from the training samples, known as inverse reinforcement
learning [31].

3 HGNN-BASED IMITATION LEARNING FOR
GATE SIZING

3.1 Pipeline Overview
Our goal is to improve the efficiency of the traditional LR-based
gate sizing without sacrificing its effectiveness. Algorithm 1 demon-
strates our ML-accelerated LDP solver and Figure 2 compares the
pipelines of the baseline and our proposed approach. To accelerate
LRS/(λ), instead of scanning all gates in each iteration, we only
try those that are likely to be changed. To be specific, the candidate
gates are predicted by imitation learning given the circuit state
encoded by an HGNN. Then the method mentioned in Section 2.1
will choose the best type for them.

Initialize solution

Update LMs

Solve ℒℛ𝒮/ 𝜆
(scan all gates)

Baseline Ours

Solve ℒℛ𝒮/ 𝜆
(scan gate subset)

Yes

No

Sizing solution

LDP solver

HGNN
(by imitation learning)

Converge?

Converge?

No

Yes

Figure 2: Pipelines of the baseline and our accelerated solver.

Algorithm 1 Our ML-accelerated LDP solver
Input: The input netlist and the inital values of λs.
Output: A netlist with optimized leakage power and timing.
1: update timing
2: useHGNN = True
3: repeat
4: update λs by (Equation (4))
5: if useHGNN then
6: S ← gates predicted by HGNN model
7: else
8: S ← all gates
9: end if
10: Sc ← ∅
11: for each gate д ∈ S do
12: select the best type for д
13: add д to Sc if its type is changed
14: end for
15: if |Sc |

|S | < th then
16: useHGNN = False
17: end if
18: until convergence
19: return the best solution of all iterations

As shown in Figure 1, the ratio of changed gates decreases very
fast. After a few iterations, only a small number of gates are pos-
itive samples. The label distribution becomes very different from
the beginning and extremely imbalanced. This leads to the Out-
of-Distribution (OOD) problem which is known to be hard to ad-
dress [32, 33]. To deal with the OOD problem, in practice, we calcu-
late the ratio of gates in the candidate set that are indeed changed
for each iteration. If the ratio drops below a threshold th set as 0.2
in our implementation, which implies that the label distribution
has already shifted largely, the solver will scan every gate in the
remaining iterations without using our model as filter.

In the following sections, we will give the details of circuit rep-
resentation learning with HGNN model and imitation learning
strategy.

3

Figure 3: An illustration of representing a circuit in a het-
erogeneous graph. Above is a small circuit with two gates,
where each gate has 2 input pins and 1 output pin. Below is
its corresponding graph representation. The orange nodes
are the gate nodes inVд and the blue nodes are the pin nodes
in Vp . The edges in Eд , Ep and En are presented in orange,
blue, and black respectively.

3.2 Circuit Modeling
The circuit is represented by a heterogeneous directed graph G =
(V ,E). Specially, V = Vд ∪ Vp , where Vд contains the gate nodes
and Vp contains the pin nodes. And there are three types of edges,
namely E = Eд ∪ Ep ∪ En , where Eд are edges from pins to their
corresponding gates; Ep are forward and backward edges between
each input pin and each output pin inside a gate; En are forward
and backward edges between input pins and their driver pins in a
net. See Figure 3 for an illustration.

The features of nodes and edges are summarized in Table 1. Note
that we add backward edges to facilitate message passing on the
graphs, but the data flow direction could still be preserved since
we include the input/output pin type in node features. Considering
the rise/fall timing constraints, the length of features is 6 for input
pins and output pins in Vp , 4 for any v ∈ Vд , and 6 for any e ∈ E.
We normalize the slack in pin features, delay and rcdelay in edge
features by the clock period of the netlist. These features will further
be embedded through embedding or linear layers depending on
whether the feature is categorical or numerical, and concatenated
into a vector of length 64. Specifically, the categorical and numerical
features of each gate node are embedded into 18 and 46 dimensions
respectively while those of each pin node are embedded into 8 and
56 dimensions respectively. In the following, we use h(v) ∈ Rd to
denote the feature vector of node v and Hv ∈ R |V |×d to represent
the node featurematrix formed by all nodes, whered = 64. Similarly
definitions are used for h(e) ∈ Rd and He ∈ R |E |×d .

3.3 Circuit State Encoding with HGNN
Based on the embedded features, we use our proposed HGNNmodel
to encode the local circuit state for each gate. Figure 4 shows the ar-
chitecture of our HGNNmodel. Node featuresHv and edge features
He are batch normalized and fed into the model, which consists
of L HGNN layers. Each layer is built upon the graph neural (GN)
block of [34] with additional attention mechanism and mechanism
for processing heterogeneous graphs. Specifically, the edge features
H l
e and node features H l

v are the inputs for the l-th layer. Batch
normalization operation is first applied to the input features. Then

Table 1: The features for the nodes and edges in G.

Type Feature
Length

Vp Vд Einput
pin

output
pin

Categorical
footprint - - 1 -
is_sizable - - 1 -
is_output_pin 1 1 - -

Numerical

#fan-ins - - 1 -
area - - 1 -
slack 2 2 - -
capacitance 1 - - -
gain 0 1 - -
slew 2 2 - -
delay - - - 2
rc_delay - - - 2
lambda - - - 2

Total 6 6 4 6

the edge features and node features are updated by an edge ag-
gregation model, and a node aggregation model respectively. The
updated features further go through a fully connected network
and the normalization process, which results in the intermediate
features H l ′

e and H l ′
v . A residue connection is employed at last:

H l+1
v = H l ′

v + H
l
v (5a)

H l+1
e = H l ′

e + H
l
e (5b)

Finally, the output H l+1
v and H l+1

e will be the input features for the
next layer.

After L layers of convolution, each gate is able to gather informa-
tion from its L-hop neighborhood in its feature. Considering that a
4-hop neighborhood is already enough to approximate the global
circuit environment well in the original LDP solver, we use L = 4 in
our model. Finally, the output node features at the last layer, HL+1

v ,
which encode the current gate state of the circuit, are passed to a
policy network to predict the action.

In the following, we will introduce the details of node and edge
aggregation models shown in Figure 4.

3.3.1 Edge AggregationModel. For an edge e of type t ∈ {д,p,n}
from node u to node v , its edge feature h(e) is updated to h′(e) by
Equation (6).

h′(e) = ReLU(W t
e · [h(u) ∥ h(e) ∥ h(v)]), (6)

whereW t
e ∈ Rd×3d is the parameter matrix for edge type t and ∥

means concatenation operation.

3.3.2 Node AggregationModel. We leverage the EGAT layer [35]
in the node aggregation model to update the node features. For a
node v of type t ∈ {д,p}, that has m in-coming edges ei for i ∈
{1 . . .m} with corresponding start node vi , the node aggregation
model first aggregates (h(v) ∥ h(ei) ∥ h(vi)) to ri ∈ Rd via a

4

Edge

Aggregation

FC & Norm FC & Norm

Batch Norm

HGNN

Layer
𝐿 ×

Policy

Network

Circuit State

Action

Linear

𝑢𝑣
𝑒

ℎ(𝑣) ℎ(𝑢)ℎ(𝑒)

ℎ′(𝑒)

]

𝐻𝑣
𝑙 𝐻𝑒

𝑙

𝐻𝑒
𝑙′

𝐻𝑣
𝑙′

𝐻𝑣
𝑙+1 𝐻𝑒

𝑙+1

𝐻𝑣 𝐻𝑒

[

Node

Aggregation

…

𝑣

…

Linear

…

𝑒1 𝑒𝑚

𝑣1 𝑣𝑚

𝑟1 𝑟𝑚

𝛼1 𝛼𝑚

ℎ′(𝑣)

[] []
ℎ(𝑣) ℎ(𝑒1) ℎ(𝑣1) ℎ(𝑣) ℎ(𝑒𝑚) ℎ(𝑣𝑚)

…

× ×

ℎ(𝑣1) ℎ(𝑣𝑚)

Figure 4: The architecture of our proposed HGNN model and policy network. The model overview is on the left while the
details of our HGNN layer, the edge aggregation model, and the node aggregation model are shown on the right side. Each
layer employs an edge aggregation model and a node aggregation model to update the edge and node features. The output
features of the last layer encode the state of the circuit and are used to predict the action by the policy network.

linear layer, and compute an attention score αi for vi as follow:

ri = LeakyReLU(Wr · [h(v) ∥ h(ei) ∥ h(vi)]) (7)

αi =
exp(aT · ri)∑m
i=1 exp(aT · ri)

(8)

whereWr ∈ Rd×3d and a ∈ Rd are parameters shared by both node
types. Whenv is a gate, αi represents the importance of the pins on
this gate. When v is a pin, αi represents the importance of different
pins and timing arcs connected to this pin. The node feature is then
updated by

h′(v) =
m∑
i=1

αih(vi). (9)

The attention mechanism allows the gates and pins to select the
most important neighbors that carry critical timing or leakage
information.

3.4 Candidates Selection by Imitation Learning
After the circuit state is encoded by the HGNN model, a policy
network takes the encoded state to predict the action, i.e. selecting
the set of candidate gates. Specifically, we employ a fully connected
network as our policy network. We pass the features of the sizable
gates to the policy network to produce the binary classification for
each gate in parallel, indicating whether this gate is selected or not.
Therefore, the total outputs will be of shape |Vs | × 2, where Vs is
the set of sizable gates.

We train our network in an imitation learning manner. The
original LDP-solver is regarded as the expert to demonstrate actions
for different states, which produces a sequence of state and action
pairs. We treat these pairs as independent samples and train our

network with supervision on these samples using the weighted
Cross-Entropy loss:

Loss = −
1
|Vs |

∑
(v,l)∈Ds

wl · log
exp(plv)

exp(p0v) + exp(p1v)
, (10)

where Ds = {(vi , li)}
|Vs |
i=1 is the set of pairs that represent whether

the type of a sizable logic gate vi is changed or not. Note that,
li = 1 indicates gate vi is changed and vice versa for li = 0. Here
wl with l ∈ {0, 1} are reweighting parameters and (p0v ,p1v) are the
network’s predicted value for gate v .

3.5 Inference on Large Benchmarks
During inference, for small benchmarks, we can take the whole
heterogeneous directed graph and predict the cell selection by our
HGNN model in one batch. However, due to memory limit, some
of the benchmarks are too large to fit into memory after we con-
vert them to graphs. To address this issue, instead of feeding the
entire graph into the model, we divide the sizable gates into several
batches. We take one batch at a time and sample the subgraph
induced by the L-hop neighborhood of the target gates in the batch.
The sampled subgraph is fed into the HGNN model and produce
the predicted action for this batch. Since HGNN only gathers infor-
mation from the L-hop neighborhood for each gate, this technique
allows us to infer on large benchmarks without performance loss.

4 EXPERIMENTS
To evaluate our accelerated gate sizer, we take the benchmarks
from ISPD 2013 Contest [21] as our dataset. Note that, we use
(slow) and (fast) to denote a netlist with a slow and fast clock period
respectively, and treat them as different benchmarks. As shown in

5

Table 2: The netlist size and number of sizable gates for each
benchmark in our dataset.

Benchmark Netlist Size Sizable

Training
Set

usb_phy (slow) 622 510
pci_bridge32 (slow/fast) 30,762 27,244
fft (fast) 33,791 30,782

Validation
Set

usb_phy (fast) 622 510
fft (slow) 33,791 30,782

Test
Set

cordic (slow/fast) 42,936 41,673
des_perf (slow/fast) 113,345 104,310
edit_dist (slow/fast) 129,226 121,004
matrix_mult (slow/fast) 159,641 153,542
netcard (slow/fast) 984,093 884,427

Table 2, we use 4, 2, and 10 benchmarks for training, validation,
and testing respectively. In order to fully test the generalizability
of our model, the netlists of training/validation and test sets are
completely different such that the difference in graph structure is
maximized. Moreover, to test if it can scale to larger instances, we
only train the model on the smallest netlists.

During training, for each training/validation benchmark, we
take results of the first 25 iterations of the baseline LDP solver as
samples. Therefore, we have 100 and 50 samples for training and
validation respectively. We use a batch size of 1 and learning rate
0.002. We set dropout ratio as 0.2 and the class weight for positive
class as 0.95 to address the label imbalance issue. We train our
network for 250 epochs and take the model with the lowest loss on
validation set.

Since our method presents a general acceleration method to
Lagrangian Relaxation, it could easily be applied to other LR-based
gate sizing algorithms. For the ease of experiments, we compared
our method with the open-source method proposed in [9].

4.1 PPA Results
Table 3 compares the baseline [9] and our ML-accelerated algorithm
from the aspects of leakage power, timing violation, load violation
and runtime. The runtime of our method is the summation of model
inference time on GPU and LDP solving time on CPU. In one it-
eration, model inference only accounts for 7.6% of the runtime on
average. The model is invoked for 19% of total iterations and re-
duces the number of scanned gates to 16% of the total sizable gates
on average. The slew violation is omitted in the table since both
methods achieve zero slew violation for all test benchmarks. On
average, our method achieves 12.7% lower timing violation, 16.9%
lower load violation and 22.5% reduction of runtime with only 1.8%
overhead of leakage power. Our model also reveals good generaliz-
ability considering that it is trained on benchmarks of size at most
33K but tested on large unseen benchmarks of size up to 984K.

To further study the behavior of our ML-accelerated sizer, we
demonstrate the trend of precision, recall and F1 score of our model
on four benchmarks in Figure 5. Due to the use of high positive
class weight, the recall stays relatively high. And due to the afore-
mentioned label imbalance and OOD problems, the precision of our
model becomes worse as the number of iterations increases.

0 2010
Iteration

0.25

0.50

0.75 Precision
Recall
F1

(a) matrix_mult (fast)

0 2010
Iteration

0.25

0.50

0.75
Precision
Recall
F1

(b) matrix_mult (slow)

0 2010
Iteration

0.0

0.5

1.0

Precision
Recall
F1

(c) netcard (fast)

5 1510
Iteration

0.0

0.5

1.0

Precision
Recall
F1

(d) netcard (slow)

Figure 5: The precision, recall and F1 of selected bench-
marks.

4.2 Comparison with Heuristics
Besides the baseline algorithm, which could be considered as a full
selection strategy, we further compare our method with two more
heuristics: slack-based selection and lambda-delay-based selection.

Since the LR-based method tends to change gates with large
negative slack in the early stage as shown in Figure 1, it is natural
to design the slack-based selection heuristic which selects gates
with largest negative slack as the candidates for speedup. For each
iteration, we sort the gates in descending order of their negative
slack and select the top K gates as the candidates, where K is set
to the same value as the number of gates selected by our ML-
accelerated method.

Similarly, since the optimization objective includes minimizing
the lambda delay, we implement another heuristic which selects
the gates with largest local lambda delay as candidates. For each
iteration, we sort the gates in descending order of their local lambda
delay and select the top K gates likewise.

In Table 4 we show the performance difference of the three
algorithms compared to the baseline. All results are averaged among
10 test benchmarks and displayed as percentage. In Figure 6, we use
box plots to visualize the distribution of the performance difference
on test benchmarks, where each distribution is summarized by a box
with 5 lines that represent (1) the minimum, (2) the first quartile,
(3) the median, (4) the third quartile, and (5) the maximum. For
runtime reduction, our method runs 22.5% faster than the baseline
on average while the two heuristics are only 7.0% and 7.1% faster.
And according to Figure 6(a), our method achieves acceleration on
all test benchmarks, i.e. no positive runtime difference, while the
other two fail to obtain runtime reduction on some benchmarks.
For leakage power optimization, our method is comparable to the
baseline with only 1.8% increase on average, but the ones achieved

6

Table 3: Results on 10 test benchmarks.T is the clock period. Our method obtains an average 22.5% reduction of runtime with
only slight overhead of leakage power and violations.

Benchmark T (ps) Leakage Power (W) Timing Viol. (ps) Load Viol. (fF) Runtime (min)
Baseline Ours Baseline Ours Baseline Ours Baseline Ours Diff.

cordic (fast) 2626 1.6343 1.5145 683.34 773.82 0.04 0.00 17.3 16.6 -4.0%
cordic (slow) 3000 0.3074 0.3083 133.58 162.60 0.04 0.00 11.3 10.2 -9.7%
des_perf (fast) 1140 0.7353 0.8080 1829.22 875.73 0.00 0.00 38.0 20.2 -46.8%
des_perf (slow) 1300 0.3373 0.3408 813.15 220.57 0.00 0.00 28.8 16.0 -44.4%
edit_dist (fast) 3000 0.5740 0.5766 110.94 89.48 0.47 0.46 33.1 22.2 -32.9%
edit_dist (slow) 3600 0.4291 0.4297 30.25 61.06 1.62 2.02 28.6 22.7 -20.6%
matrix_mult (fast) 2200 2.0527 2.3794 485.32 369.80 0.12 0.01 55.7 43.7 -21.5%
matrix_mult (slow) 2800 0.4765 0.4635 71.63 69.07 0.01 0.03 41.8 36.8 -12.0%
netcard (fast) 2000 5.1473 5.1590 63.93 4.84 304.95 130.02 86.0 61.5 -28.5%
netcard (slow) 2400 5.1168 5.1219 0.95 0.95 3226.91 1849.33 50.9 48.6 -4.5%
Average +1.8% -12.7% -16.9% -22.5%

Heu1 Heu2 Ours
Method

-40%

-20%

0%

20%

Ru
nt

im
e

D
iff

(a) Runtime diff.

Heu1 Heu2 Ours
Method

0%

100%

200%

Le
ak

ag
e

D
iff

(b) Leakgae Power diff.

Heu1 Heu2 Ours
Method

-100%

0%

100%

200%

Ti
m

in
g

V
io

l D
iff

(c) Timing viol. diff.

Heu1 Heu2 Ours
Method

0%

200%

400%

600%

Lo
ad

 V
io

l D
iff

(d) Load viol. diff.

Figure 6: Distributions ofmetric difference on test set, where
Heu1 represents the slack-based heuristic and Heu2 repre-
sents the lambda-delay-based heuristic.

Table 4: Comparison with two heuristics in terms of average
difference in runtime, leakage power, timing violation and
load violation.

Metric Slack-based Lambda-delay
-based Ours

Runtime -7.0% -7.1% -22.5%
Leakage Power +25.7% +29.5% +1.8%
Timing Viol. -35.0% +6.7% -12.7%
Load Viol. -44.6% +13.7% -16.9%

by the heuristics are unacceptable with more than 25% degradation.
In terms of timing and load violation, lambda-delay-based heuristic
has worse average timing and load violation compared to baseline
and has large distribution variance as shown in Figure 6(c) and
Figure 6(d), which indicates unstable performance. The slack-based

Table 5: The performance of models with different feature
removed.

Model Precision Recall F1 Accu.
-footprint 0.42 0.89 0.54 0.46
-is_sizable 0.42 0.88 0.54 0.48
-is_output_pin 0.43 0.94 0.56 0.50
-#fan-ins 0.42 0.88 0.53 0.46
-area 0.43 0.91 0.56 0.51
-slack 0.64 0.47 0.54 0.73
-capacitance 0.44 0.85 0.55 0.52
-gain 0.44 0.88 0.56 0.53
-slew 0.40 0.63 0.48 0.52
-delay 0.46 0.69 0.51 0.60
-rc_delay 0.46 0.84 0.56 0.55
-lambda 0.43 0.93 0.56 0.48
All 0.69 0.90 0.78 0.83

heuristic improves the two violation and has similar distribution
variance to our method. But as shown before, it has significantly
worse leakage power and unstable runtime reduction.

The two heuristics neglect leakage optimization and only con-
sider the timing constraint related part in the optimization objective
by focusing on gates with large negative slack or lambda delay.
Therefore, they have either worse optimization results or unstable
performance. This validates that our HGNN model can not only
select gates that may violate timing or load constraints, but also
those with small negative slack, and thus ensure a balance between
leakage and timing optimization.

4.3 Feature Importance
We conduct ablation study to evaluate the importance of different
node and edge features. For each feature used in our model, we
remove it and retrain ourmodel. Table 5 shows, for the first iteration,
the average precision, recall, F1 and accuracy of these models on
test benchmarks.

According to Table 5, using all features obtains the highest F1
score and accuracy. Removing one of the features will lead to at

7

3 6
0.00

0.25

0.50

0.75
F1
Accuracy

4 5
Number of Layers

Figure 7: Comparison between models with different num-
ber ofHGNN layers on F1 and accuracy. Results are averaged
on test set.

least 20% decrease in F1 score. Specifically, removing slack will
make model recall decrease significantly. Removing the following
features will result in drastic loss of model precision: cell footprint,
if a cell is sizable, if a pin is output pin, number of cell fan-ins, cell
area, pin capacitance, gain, edge rc_delay and edge lambda. And
removing edge slew and delay will influence both precision and
recall.

In our scenario, high model recall ensures that most positive
gates could be included in the candidate set and therefore is crucial
to PPA results. High model precision, on the other hand, makes sure
the candidate set contains less redundant gates and thus mostly
contributes to reducing runtime.

4.4 Number of HGNN Layers
For models with different number of HGNN layers, Figure 7 shows
their average F1 score and accuracy for the first iteration on test
benchmarks. Model with 3 layers has the worst F1 score and ac-
curacy, since the original LR employs a 4-hop neighbourhood to
represent the local environment of a gate and the model needs at
least 4 layers to model that environment. Models with more than
4 layers have slightly worse F1 and accuracy than the one with 4
layers, possibly because of the over-smoothing issue caused by the
increasing model depth, which has been shown to be especially
harmful to node classification tasks [36].

5 CONCLUSION
In this paper, we propose an HGNN model trained with imitation
learning to accelerate LR-based gate sizing algorithms. The HGNN
model is able to effectively encode timing and power information
and transfer the learned knowledge to larger unseen graphs. The
resulting algorithm achieves comparable performance to the base-
line sizer in a 22.5% shorter runtime on the ISPD 2013 Contest
benchmarks. There is still large potential to improve our model to
achieve better speedup by easing the OOD problem.

Applications to Other LR-based Algorithms. Notably, our
approach is general and applicable to LR-based algorithms, where
similar iterative procedure is performed and in each iteration a
Lagrangian relaxation subproblem is optimized by searching a solu-
tion space [37–41]. Besides its application in the gate sizing problem
demonstrated in this work, our method has the potential to nar-
row the search space for LR-based algorithms in other tasks, e.g.

sparsing the graph in network design [40] and reducing candidate
warehouses in supply chain management [41].

ACKNOWLEDGEMENT
This workwas supported byHongKong Innovation and Technology
Fund Project No. ITS/170/20.

REFERENCES
[1] V. Bhardwaj, “Shift left trends for design convergence in SOC: An EDA perspec-

tive,” International Journal of Computer Applications, vol. 174, no. 16, pp. 22–27,
2021.

[2] T. Kutzschebauch and L. Stok, “Congestion aware layout driven logic synthesis,”
in IEEE/ACM International Conference on Computer Aided Design, pp. 216–223,
IEEE, 2001.

[3] M. Ebrahimi, F. Oboril, S. Kiamehr, and M. B. Tahoori, “Aging-aware logic syn-
thesis,” in 2013 IEEE/ACM International Conference on Computer-Aided Design,
pp. 61–68, IEEE, 2013.

[4] K. O. Tinmaung, D. Howland, and R. Tessier, “Power-aware FPGA logic syn-
thesis using binary decision diagrams,” in Proceedings of the 15th International
Symposium on Field Programmable Gate Arrays, pp. 148–155, 2007.

[5] W. Ning, “Strongly NP-hard discrete gate-sizing problems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 13, no. 8, pp. 1045–
1051, 1994.

[6] S. S. Sapatnekar, V. B. Rao, P. M. Vaidya, and S.-M. Kang, “An exact solution to
the transistor sizing problem for CMOS circuits using convex optimization,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 12,
no. 11, pp. 1621–1634, 1993.

[7] S. Hu, M. Ketkar, and J. Hu, “Gate sizing for cell-library-based designs,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 6, pp. 818–825, 2009.

[8] C. C. Chu and M. D. Wong, “Greedy wire-sizing is linear time,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 18, no. 4, pp. 398–
405, 1999.

[9] G. Flach, T. Reimann, G. Posser, M. Johann, and R. Reis, “Effective method for
simultaneous gate sizing and v th assignment using lagrangian relaxation,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 33,
no. 4, pp. 546–557, 2014.

[10] A. Sharma, D. Chinnery, S. Dhamdhere, and C. Chu, “Rapid gate sizing with fewer
iterations of lagrangian relaxation,” in 2017 IEEE/ACM International Conference
on Computer-Aided Design, pp. 337–343, IEEE, 2017.

[11] A. Sharma, D. Chinnery, T. Reimann, S. Bhardwaj, and C. Chu, “Fast lagrangian
relaxation-based multithreaded gate sizing using simple timing calibrations,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 7, pp. 1456–1469, 2019.

[12] G. Wu and C. Chu, “Simultaneous slack matching, gate sizing and repeater
insertion for asynchronous circuits,” in 2016 Design, Automation & Test in Europe
Conference & Exhibition, pp. 1042–1047, IEEE, 2016.

[13] J. Chen, J. Kuang, G. Zhao, D. J.-H. Huang, and E. F. Young, “Pros: A plug-in
for routability optimization applied in the state-of-the-art commercial EDA tool
using deep learning,” in 2020 IEEE/ACM International Conference On Computer
Aided Design, pp. 1–8, IEEE, 2020.

[14] T. Qu, Y. Lin, Z. Lu, Y. Su, and Y. Wei, “Asynchronous reinforcement learning
framework for net order exploration in detailed routing,” in 2021 Design, Automa-
tion & Test in Europe Conference & Exhibition, pp. 1815–1820, IEEE, 2021.

[15] C.-W. Pui, G. Chen, Y. Ma, E. F. Young, and B. Yu, “Clock-aware ultrascale fpga
placement with machine learning routability prediction,” in 2017 IEEE/ACM
International Conference on Computer-Aided Design, pp. 929–936, IEEE, 2017.

[16] Y. Ma, H. Ren, B. Khailany, H. Sikka, L. Luo, K. Natarajan, and B. Yu, “High per-
formance graph convolutional networks with applications in testability analysis,”
in Proceedings of the 56th Annual Design Automation Conference 2019, pp. 1–6,
2019.

[17] B. Jiang, L. Liu, Y. Ma, H. Zhang, B. Yu, and E. F. Young, “Neural-ILT: migrating ilt
to neural networks for mask printability and complexity co-optimization,” in 2020
IEEE/ACM International Conference On Computer Aided Design, pp. 1–9, IEEE,
2020.

[18] Y.-C. Lu, S. Nath, V. Khandelwal, and S. K. Lim, “RL-Sizer: VLSI gate sizing for
timing optimization using deep reinforcement learning,” in 58th ACM/IEEE Design
Automation Conference, pp. 733–738, IEEE, 2021.

[19] H. Tennakoon and C. Sechen, “Gate sizing using lagrangian relaxation com-
bined with a fast gradient-based pre-processing step,” in Proceedings of the 2002
IEEE/ACM international conference on Computer-aided design, pp. 395–402, 2002.

[20] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning: A survey of
learning methods,” ACM Computing Surveys, vol. 50, no. 2, pp. 1–35, 2017.

8

[21] M. M. Ozdal, C. Amin, A. Ayupov, S. Burns, G. Wilke, and C. Zhuo, “An improved
benchmark suite for the ISPD-2013 discrete cell sizing contest,” in Proc of ACM
International Symposium on Physical Design, pp. 168–170, 2013.

[22] J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally
connected networks on graphs,” in ICLR, 2014.

[23] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in
KDD, 2016.

[24] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and M. Welling,
“Modeling relational data with graph convolutional networks,” in European Se-
mantic Web Conference, 2018.

[25] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu, “Heterogeneous graph
attention network,” in The World Wide Web Conference, pp. 2022–2032, 2019.

[26] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level con-
trol through deep reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–533,
2015.

[28] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering
the game of go with deep neural networks and tree search,” nature, vol. 529,
no. 7587, pp. 484–489, 2016.

[29] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning
from demonstration,” Robotics and Autonomous Systems, vol. 57, no. 5, pp. 469–483,
2009.

[30] K. Judah, A. P. Fern, and T. G. Dietterich, “Active imitation learning via reduction
to i.i.d. active learning,” in 2012 AAAI Fall Symposium Series, 2012.

[31] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, et al., “Maximum entropy
inverse reinforcement learning.,” in AAAI, vol. 8, pp. 1433–1438, 2008.

[32] Z. Shen, J. Liu, Y. He, X. Zhang, R. Xu, H. Yu, and P. Cui, “Towards out-of-
distribution generalization: A survey,” arXiv preprint arXiv:2108.13624, 2021.

[33] X. Zhang, P. Cui, R. Xu, L. Zhou, Y. He, and Z. Shen, “Deep stable learning for
out-of-distribution generalization,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5372–5382, 2021.

[34] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Ma-
linowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al., “Relational induc-
tive biases, deep learning, and graph networks,” arXiv preprint arXiv:1806.01261,
2018.

[35] K. Kamiński, J. Ludwiczak, M. Jasiński, A. Bukala, R. Madaj, K. Szczepaniak, and
S. Dunin-Horkawicz, “Rossmann-toolbox: a deep learning-based protocol for the
prediction and design of cofactor specificity in rossmann fold proteins,” Briefings
in Bioinformatics, vol. 23, no. 1, p. bbab371, 2022.

[36] W. Huang, Y. Rong, T. Xu, F. Sun, and J. Huang, “Tackling over-smoothing for
general graph convolutional networks,” arXiv preprint arXiv:2008.09864, 2020.

[37] L. Yang and X. Zhou, “Constraint reformulation and a lagrangian relaxation-
based solution algorithm for a least expected time path problem,” Transportation
Research Part B: Methodological, vol. 59, pp. 22–44, 2014.

[38] M. El-Kebir, J. Heringa, and G. W. Klau, “Lagrangian relaxation applied to sparse
global network alignment,” in IAPR International Conference on Pattern Recognition
in Bioinformatics, pp. 225–236, Springer, 2011.

[39] A. A. Butt and R. T. Collins, “Multi-target tracking by lagrangian relaxation to
min-cost network flow,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1846–1853, 2013.

[40] C. Xie and M. A. Turnquist, “Lane-based evacuation network optimization: An in-
tegrated lagrangian relaxation and tabu search approach,” Transportation Research
Part C: Emerging Technologies, vol. 19, no. 1, pp. 40–63, 2011.

[41] A. Diabat, J.-P. Richard, and C. W. Codrington, “A lagrangian relaxation approach
to simultaneous strategic and tactical planning in supply chain design,” Annals
of Operations Research, vol. 203, no. 1, pp. 55–80, 2013.

9

