
TOFU: A Two-Step Floorplan Refinement Framework
for Whitespace Reduction

Shixiong Kai1∗ , Chak-Wa Pui1 , Fangzhou Wang2 , Shougao Jiang3 , Bin Wang1 , Yu Huang3 , and Jianye Hao1,4

1Huawai Noah’s Ark Lab, 2The Chinese University of Hong Kong, 3Hisilicon, 4Tianjin University
∗kaishixiong@huawei.com

Abstract—Floorplanning, as an early step in physical design, will greatly
affect the PPA of the later stages. To achieve better performance while main-
taining relatively the same chip size, the utilization of the generated floorplan
needs to be high and constraints related to design rules, routability, power
should be honored. In this paper, we propose a two-step framework, called
TOFU, for floorplan whitespace reduction with fixed-outline and soft/pre-
placed/hard modules modeled. Whitespace is first reduced by iteratively
refining the locations of modules. Then the modules near whitespace will
be changed into rectilinear shapes to further improve the utilization. To
ensure the legality and quality of the intermediate floorplan during the
refinement process, a constraint graph-based legalizer with a novel constraint
graph construction method is proposed. Experimental results show that the
whitespace of the initial floorplans generated by Corblivar [1] can be reduced
by about 70% on average and up to 90% in several cases. Moreover, the
resulting wirelength is also 3% shorter due to a higher utilization.

I. INTRODUCTION

Floorplanning has been one of the most crucial stages in modern physi-
cal design flow. Having the same chip size, a decent floorplan with higher
utilization and shorter wirelength will normally lead to a more compact
design with better power, performance, and area (PPA). In alignment
with the emerging real-world physical implementation requirements, more
constraints have been added to the classical floorplanning problem. As
mentioned in [2], floorplanning with a predetermined outline is more
practical as it enables hierarchical design for the increasingly complex
circuits. Besides, a modern floorplanning algorithm should consider pre-
placed modules (PPM).

It has been empirically shown that the fixed-outline and pre-placed-
module constraints can make it significantly harder for an algorithm to
produce legal floorplans with high utilization as well as short interconnec-
tions [3]. Therefore, in this work, we will mainly discuss the realization
of a high-utilization legal floorplan with a fixed outline and PPMs.

In recent years, analytical approaches like [4], [5] have shown a good
potential of handling the fixed-outline floorplanning problem with PPMs.
A two-stage flow is frequently used, which consists of a global distribution
and a legalization step. In the global distribution stage, modules will be
spread in the fixed outline while minimizing the total wirelength. As a
result, module overlaps and out-of-boundary modules usually exist, which
are handled in the legalization step. Zhan et al. [4] solve an unconstrained
optimization problem to remove the existing module overlaps and penalize
those violating the fixed-outline constraint. However, with the appearance
of large hard modules, their approach may fail to obtain a legal floorplan.
In [5], a pull-push model is introduced for global distribution, whose
result is later legalized by a constraint graph-based method. They also
explicitly address the existence of PPMs and utilize rectilinear shapes
to fix related overlaps. However, in their proposed legalization step, the
approach for constraint graph extraction is not robust enough, which
may (i) misinterpret the relative positions of two modules or (ii) have
unconstrained node pairs. Those factors can lead to possible overlaps
between modules and longer wirelength. The misinterpretation of relative
position of modules will be discussed specifically in Section III-B. Most
importantly, none of the aforementioned works explicitly treat whitespace
as an optimization goal.

To further improve the utilization of a preliminary floorplan, we present
TOFU, an efficient floorplan refinement framework that is aware of the
fixed-outline and pre-placed-module constraints. Our contributions can be
summarized as follows.

• We propose a two-step framework for floorplan whitespace removal
with the awareness of fixed-outline and pre-placed-module con-
straints. It can be used as a postprocessing step for any floorplanning
methods to further improve the utilization of their solutions.

• A robust and effective constraint graph extraction methodology is
introduced to improve the one mentioned in [5]. Compared to the
original method, ours can better model the relative positions of two
modules under the presence of PPMs, hard modules, and extra-large
modules.

• Two methods that target different scenarios are proposed to reduce
the whitespace between modules. A module relocation-based method
is first used to address the whitespace induced by poor initial
solutions and misinterpretation of relative positions when building
the constraint graphs. Then, an area reallocation-based method is
used to handle the whitespace that cannot be removed by rectangular
shapes.

The rest of this paper is organized as follows. Section II introduces
some floorplanning-related methodologies and defines the floorplan re-
finement problem. Section III describes our proposed frameworks for
floorplan refinement. Section IV presents our experimental settings and
results. Section V delivers a conclusion of our work.

II. PRELIMINARIES

A. Floorplanning

Floorplanning, as the ”bridge” between logic synthesis and physical
design, is a well-studied topic in academics. Given the netlist and
constraints, the floorplanning problem is used to determine the shapes
and locations of the modules such that whitespace and wirelength are
minimized. Note that, the routability can be achieved through feedthrough
[6] with near zero whitespace floorplan solution. In practice, engineers
also use channel routing [7] by digging channels between modules within
the allowable reduction of module area. The constraints in floorplanning
can be categorized into the following types.

• Module-property constraints: There are three types of modules: (1)
soft modules, (2) hard modules, and (3) pre-placed modules (PPM).
Both the shapes and locations can be changed for soft modules while
only locations can be changed for hard modules. As for PPMs, their
shapes and locations should remain untouched as given.

• Fixed-outline constraint: Fixed outline is a rectilinear region where
the modules can only be placed inside. This constraint is usually
used in hierarchical designs where modules should stay inside the
boundary of the modules in their parent hierarchy .

Floorplan refinement, similar to detailed placement in the placement
problem, is essential to the modern floorplanning flow. Different floorplan
refinement methods can also be easily used as a plug-in for any floor-
planning method to further improve the quality or remove the constraint
violations.

B. Constraint Graph-based Legalization

Given an initial placement of rectangular shapes (modules, cells,
devices, etc), the legalization problem is to determine the height, width,
and location of each rectangle such that there is no constraint violation
and the target metrics are optimized. The given input of legalization is



A floorplan solution 
(legal/near legal )

Floorplan Legalization

Constraint graph 
construction

Location/Shape 
refinement

A legal floorplan solution

Module Relocate

Floorplan Legalization

Module Location-based 
Whitespace Removal

converge

Area Reallocation-based 
Whitespace Removal

Module Area 
Reallocate

Floorplan Legalization

no

Fig. 1: Overall Flow of the Proposed Algorithm.

usually considered as a solution that is nearly legal. Hence, the relative
position between the rectangles should be honored and the constraint
graph-based legalization is commonly used to achieve this. A constraint
graph including two directed acyclic graphs denoted as Gv and Gh.
Each node ni in the graph represents the ith rectangle mi and an edge
eij ∈ Gh (eij ∈ Gv) from ni to nj suggests that mj should be on the
right (bottom) of mi. The legalization can be formulated as Equation (1).

min target metrics (1a)

s.t. wi · hi = ai (1b)

xi + wi ≤ xj ∀eij ∈ Gh (1c)

yi + hi ≤ yj ∀eij ∈ Gv (1d)

other application specific constraints. (1e)
Let xi, yi, wi, hi and ai be the bottom-left coordinate, width, height and
area of the ith rectangle.

C. Problem Definition

Given a netlist of modules and their initial positions and shapes, the
floorplan refinement problem is to reduce the whitespace such that there is
no overlap between modules and all constraints (i.e. module-property and
fixed-outline) are satisfied. Note that, here we assume the input solutions
should be either legal or near legal (modules can be legalized with a small
displacement) and we should honor the initial positions of modules for
better wirelength.

III. PROPOSED ALGORITHMS

A. Overview

As shown in Figure 1, our algorithm consists of three parts: (1)
floorplan legalization, (2) module location-based whitespace removal,
and (3) area reallocation-based whitespace removal. In the first step,
a constraint graph-based floorplan legalization method is proposed to
ensure all constraints are satisfied and improve the utilization. And it
will be called multiple times during the whole algorithm process. In the
second step, the locations of modules near whitespace are adjusted to
handle the whitespace induced by the modules’ initial positions. In the
third step, starting from the bottom region, the modules will be changed
from rectangle to rectilinear shape to fill the whitespace. Details of our
legalization method and whitespace removal framework will be discussed
in Sections III-B and III-C respectively.

𝑦௩ = ℎ
(𝑥

, 𝑦
)

(𝑥
, 𝑦

)

x௩ = 0

(a)

𝑑

𝑑௧

𝑑

𝑑

(b)
Fig. 2: Misinterpretations of relative position in [5].

B. Floorplan Legalization

During floorplan legalization, we need to determine the shape and
location of each module such that all the constraints are satisfied. The
constraint graph-based method mentioned in Section II-B is used and the
formulation is as below.

min |W −W |+ |H −H| (2a)

s.t. W = max
∀mi∈M

(xi + wi) (2b)

H = max
∀mi∈M

(yi + hi) (2c)

wi · hi = ai (2d)
1

ari
≤ wi

hi
≤ ari (2e)

xi + wi ≤ xj ∀eij ∈ Gh (2f)

yi + hi ≤ yj ∀eij ∈ Gv (2g)
Let xi, yi, wi, hi, ai and ari be the bottom-left coordinate, width,
height, area and maximum aspect ratio of the ith module. The width
and height of an outline is denoted by (W,H). The objective is to
minimize the difference between the actual outline (W,H) and fixed
outline (W,H). The actual outline is determined by the top right corner
of each module as shown in Equations (2b) and (2c). The constraints of
module area and aspect ratio are modeled in Equations (2d) and (2e).
Finally, Equations (2f) and (2g) ensure that there is no module overlap as
long as the constraint graph is built appropriately. Details of our constraint
graph construction method will be introduced in the following section.
Note that, unlike [5], we fix the locations/shapes of PPMs and the shapes
of hard modules when solving Equation (2). Equation (2) can be solved by
second order cone programming (SOCP) [5] or Lagrangian relaxation [8].
In our implementation, we use Gurobi [9] to solve the equations as an
SOCP problem for the purpose of easy integration.

1) Constraint Graph Construction: Our constraint graph (CG) con-
struction method is based on the one mentioned in [5]. First, the Delaunay
triangulation (DT) method is used to find the neighboring information
among the modules. Any two nodes connected in the DT graph represent
two modules that are adjacent to each other. An edge will be constructed
in either Gv or Gh to represent their relative position. However, the
approach to construct CG from DT graph in [5] has two major drawbacks
as discussed in Section I.

Figure 2 shows two examples of how the relative position of two
modules can be misinterpreted. In Figure 2a where mi and mj are
separated, an edge is added to Gv since (xc

j − xc
i ) is smaller than

(yc
j − yc

i ). Figure 2b shows an example for two overlapped modules mi

and mj , an edge is added to Gv since height is larger than width for the
overlapped area. To overcome these shortcomings, our method determines
the geometric relation of two modules mi and mj as follows,

• One completely covered by the other: Without loss of generality,
we assume mi is completely covered by mj . We choose a direction
that we can move mi out of mj such that the distance is minimized.
The relative position of the two after overlap removal determines
how they are connected in the CG.

• Otherwise: Let pxi , p
y
i (pxj , p

y
j ) be the projection of mi (mj) on X-

axis (Y-axis). If their projection has no overlap on both axes, we will



Algorithm 1 Module relocation-based whitespace removal.

Require: A legal floorplan.
Ensure: A legal floorplan with less whitespace.

1: for each empty grid gij ∈ G do
2: let wij be the largest whitespace of gij
3: let Mij be the adjacent modules set of wij sorted by relative

position to wij ( top ¿ right ¿ left)
4: for each module mk ∈ Mij do
5: remove mk from layout
6: recalculate the largest whitespace w′

ij of gij
7: if mi can be successfully placed in w′

ij with appropriate aspect
ratio and overlap less than 10% of its area then

8: commit the result
9: break

10: end if
11: end for
12: end for
13: legalize the floorplan
14: go to line 1 if whitespace or wirelength is improved

follow the rules in [5]. Otherwise, an edge is added to Gh (Gv) if
the overlapped length on Y-axis (X-axis) is longer.

After building the CG from DT graph using our method, the constraint
graph may not be sufficient to remove all overlaps. First, two matrices
representing the relative position of all module pairs in the CG are built
using the method in [10]. Then, for any two modules that have no relation
in the CG, we will use the method mentioned previously to add an edge
to the corresponding CG.

C. Two-Step Whitespace Removal Framework

Given a legal floorplan, our two-step whitespace removal framework
will try to improve the utilization by relocating and reshaping the
modules near whitespace. In this section, we will introduce how the target
whitespace is identified in our method and how they can be reduced by
our methods.

To identify the whitespace in a given floorplan, the layout is first
decomposed into a 2D grid G whose width and height are m and n
respectively. Then for any grid cell gij ∈ G, we will mark the modules
that have overlaps with it by traversing each module and the grid cells
it covers. After this preprocessing, we can easily find the rectangular
whitespace by scanning the grid from the lower-left corner row by row. To
be specific, for an empty grid cell gij , we will find the largest rectangular
whitespace wk whose lower left corner is gij such that all gpq ∈ wk

are empty. Note that, since long and narrow channels will usually induce
routability issues, we will skip the whitespace that has a big aspect ratio (9
in our implementation).

The general idea of our whitespace removal framework is to squeeze
the whole floorplan towards the bottom left corner. The first step of our
framework is to remove the whitespace induced by poor initial positions
while the second step targets those that cannot be resolved by rectangular
modules. Details of these two steps will be discussed in the next sections.
Note that, in the examples of this section, PPMs are denoted as fi and
marked in grey while the others are assumed to be soft modules.

1) Module Location-based: As shown in Figure 1, a constraint graph-
based legalization will be used to determine the shape and location of each
module during the whole whitespace refinement process. The legalization
results are mainly determined by the module initial locations, which is
represented as a constraint graph in legalization. Some large whitespace
may be induced by either constraint graph misinterpretations or poor
initial locations, which are hard to observe until the actual floorplan is
generated. For example, as shown in Figure 3a, the horizontal constraints
among f1,m1,m2 together with the vertical constraints between m2, f3
will induce large whitespace. This kind of whitespace can be easily

ଶ

ଵ

ଶ

ଷ

ଵ

ଵ
ଷ

(a)

ଶ

ଵ

ଶ

ଷ

ଵ

(b)

ଶ

ଵ

ଶ

ଷ

ଵ ଶ

(c)

ଶ

ଵ

ଷ

ଵ ଶ

(d)

ଶ

ଵ
ଷ

ଵ ଶ

(e)
Fig. 3: Relocate modules adjacent to whitespace.

Algorithm 2 Area reallocation-based whitespace removal.

Require: A legal floorplan.
Ensure: A legal floorplan with less whitespace.

1: while utilization can be improved do
2: let Mr be the set of modules that have been reshape
3: scan for a candidate whitespace wi from lower left corner
4: mi=Reshape(wi) and add mi to Mr

5: legalize the floorplan with all modules lower than mi fixed
6: set the modules in Mr to be fixed in later iterations
7: end while

8: function Reshape(wi)
9: let Wf be the set of whitespace to be filled

10: add wi to Wf

11: find the best module mi to fill wi

12: for each adjacent whitespace wj of mi do
13: add wj to Wf if mi is the best module to fill wj

14: end for
15: reallocate the region of mi to Wf and mi

16: return mi

17: end function

resolved by relocating the nearby modules. Hence, in the first step of
our whitespace removal framework, we will improve the utilization by
relocating the modules near whitespace.

Our module relocation-based method is an iterative process as shown in
Algorithm 1. As we are trying to push the modules towards the bottom left
corner of the outline, modules below wij will be skipped and the selected
modules Mij are processed in an order of their relative positions to wij ,
that is, we will first consider modules that are on top of wij , then right,
and finally left. Note that, in line 7, when we try to place a module mij in
w′

ij , we will reshape mij to the same aspect ratio as w′
ij and align their

lower left corners. If the overlaps between mij and the others are less than
10% of its area, the relocation is considered to be successful. Figure 3
shows an example of Algorithm 1. Whitespace w3 is first identified but
is skipped since its aspect ratio is too large. Then w1 is processed and
module m1 is selected as the module to relocate. After removing m1

from the layout, w1 will be expanded to a bigger rectangle as shown in
Figure 3b, where m1 can be successfully placed. As shown in Figures 3c
and 3d, m2 will be relocated to w2 similarly. Finally, these modules will
be refined by the legalization method mentioned in Section III-B.

2) Area Reallocation-based: After relocating the modules around
whitespace, there are still some whitespace that cannot be removed due to
the limitation of rectangular shapes. Hence, in this stage, some rectangular
modules will be transformed into rectilinear shapes to further reduce the
whitespace.



ଵ

ଶ

ଷ
ଵ

ଶ
ଵ

ଶ

ଷ

(a)

ଵ

ଶ

ଷ
ଵ

ଶ
ଵ

ଶ

ଷଵ

ଶ

ଷ

ସ

(b)

ଷ
ᇱ

ଶ
ଶ

ଵ

ଵ
ସ

ଷ

(c)

ଷ
ᇱ

ଶ
ଶ

ଵ
ଵ

(d)
Fig. 4: Area reallocation for a module adjacent to whitespace.

Details of our area reallocation-based method are shown in Algo-
rithm 2. Similar to the module relocation-based method, reshaping and
floorplan legalization are called iteratively to improve the utilization.
When selecting the best module to fill a whitespace wi, we will consider
its adjacent modules in the same way as the one mentioned in the module
relocation-based method. For any candidate module mi of whitespace
wi, the longer their common edge is, the more mi is preferred. To avoid
producing ”glitches” on the boundary of a module, if the length of the
common edge between mi and wi is less than 20% of the touching
edge of mi, mi will not be considered as a candidate for filling wi. For
example, in Figure 4a, when processing w1, m1 is skipped due to its
short common edge with w1. When using mi to fill the region of Wf

and mi, the rectilinear region is first cut into rectangles horizontally as
shown in Figure 4b. Then these rectangles are filled by the area of mi

from the bottom as shown in Figure 4c.
Since we restrict the shape of non-rectangle modules with many rules,

which make the module a relatively regular shape, and feed-through
[6], pin assignment and channel routing [7] follow floorplan to achieve
routability, non-rectangle modules have little impact on global routing and
detail routing.

IV. EXPERIMENTAL RESULTS

Our floorplan refinement framework is implemented in C++ and all
the experiments are performed on a Linux server with 3.00 GHz Intel
Xeon CPUs (sixty threads available). To show the effectiveness and the
scalablity of the proposed framework, we conduct a series of experiments
with GSRC [11], MCNC [12], and IBM-HB+ [13] benchmark suites.
Corblivar [1], [14], a state-of-the-art SA-based floorplanner we can get
is used to generate a set of legal solutions1, which will be referred to
as the base floorplans in the rest of the paper. Note that, the proposed
framework does not assume a specific floorplan solution as input, allowing
it to be adopted as a postprocessing step by a wide range of floorplanning
methods.

According to the usual assumptions of academia [3], [5], we assume
that all pins are located at the center of each module’s bounding box, IO
pads’ coordinates will shrink with the actual outline, and set the maximum
aspect ratio to be 3 for all soft modules. HPWL is computed based on
the center of each module.

A. Effectiveness for Whitespace Removal

We first use our proposed framework on the base floorplans generated
by Corblivar. Quantitative results are shown in Table II. We can see that

1We reference configurations in the configs/2dies/regular folder from the repos-
itory. For IBM-HB+ cases, configurations are adapted from ibm01.conf and
ibm01 tech.conf; for GSRC and MCNC benchmarks, configurations are adapted
from Corblivar.conf and Technology.conf. Specifically, in technology files, we set
“Layers for 3D IC” and “Scaling factor for block dimensions” to 1. The width and
height of fixed outline are both set to

√
1.3× totalModuleArea. Since thermal

effect is not considered in this work, we use power files all filled with 1s. For each
case, we run Corblivar for 25 times and pick the legal floorplan with the shortest
wirelength.

(a) Generated by
Corblivar.

(b) After processed by
TOFU.

Fig. 5: Floorplans of n300.

(a) Generated by
Corblivar.

(b) After processed by
TOFU.

Fig. 6: Floorplans of ibm01.

(a) After random
perturbation.

(b) After processed by
TOFU.

Fig. 7: Floorplans of n300 where PPMs are marked in grey.

TABLE I: Experiments on Illegal Floorplans with PPMs
Benchmarks Before Perturbation Refined by TOFU

Design #(PPM) HPWL WS (%) HPWL WS (%)
n10 2 36,059 1.76 35,186 0.70
n30 6 109,222 0.62 109,075 0.73
n50 10 148,419 0.76 148,009 0.86
n100 20 252,250 1.30 252,100 1.40
n200 40 485,313 1.63 484,949 1.58
n300 60 713,212 1.56 715,668 2.18

ami33 6 71,039 0.63 71,071 0.59
ami49 9 1,144,420 0.56 1,141,580 0.69

our framework produces floorplans with much smaller whitespace while
being able to reduce the total wirelength, especially for cases with only
soft modules. For large cases like ibm01, ibm03, and ibm07, it is the
first time that such low levels of whitespace are achieved. To the best
of our knowledge, the lowest reported whitespace ratios are 13%, 14%,
and 12% respectively from [15]. Figure 5 (Figure 6) show the floorplans
before and after refinement for case n300 (ibm01), where red and blue
colors are used to mark soft and hard modules respectively. It can be
observed that the resulting floorplans are more compact, leading to the
aforementioned wirelength reduction. Besides, our proposed framework
finishes the most time consuming case (ibm04) in 175 seconds, which is
only 15% of the runtime of Corblivar. The scalability of our proposed
framework is therefore demonstrated.

B. Refinement with Pre-Placed Modules

We then demonstrate TOFU’s ability of handling pre-placed mod-
ules (PPM) in illegal floorplans. For this experiment, we use GSRC and
MCNC benchmark. As the original benchmark does not include any PPM,
we need to generate them ourselves, which will be discussed as below.



TABLE II: Experimental Results Based on Corblivar
Benchmarks Corblivar [1], [14] Refined by TOFU

Design #(Soft) #(Hard) #(Nets) HPWL WS (%) RT(s) HPWL ∆(HPWL) WS (%) ∆(WS) RT(s)
n10 10 0 118 37,986 10.17 0.51 35,213 7.30% 1.52 85.06% 1.35
n30 30 0 349 112,947 9.01 2.57 109,189 3.33% 0.61 93.18% 0.97
n50 50 0 485 155,775 11.14 5.88 147,650 5.22% 0.56 94.94% 1.55
n100 100 0 885 266,771 11.55 21.74 250,942 5.93% 1.22 89.39% 2.58
n200 200 0 1585 508,774 11.67 83.26 484,507 4.77% 1.57 86.52% 3.81
n300 300 0 1893 750,367 12.88 189.04 712,547 5.04% 1.54 88.05% 8.21

ami33 33 0 123 72,784 11.45 1.72 71,069 2.36% 0.63 94.48% 1.15
ami49 49 0 408 1,159,160 17.16 4.41 1,144,620 1.25% 0.56 96.75% 1.58
ibm01 665 246 5829 10,188,200 15.59 325.22 9,831,540 3.50% 3.64 76.68% 64.67
ibm02 1200 271 8508 22,190,500 16.42 1046.14 21,433,600 3.41% 5.57 66.11% 125.66
ibm03 999 290 10279 26,788,000 15.58 743.35 26,704,700 0.31% 6.48 58.45% 169.35
ibm04 1289 295 12456 30,896,400 13.36 1214.47 29,999,500 2.90% 3.18 76.23% 174.93
ibm06 571 178 9963 25,643,300 13.17 337.95 24,975,600 2.60% 3.72 71.78% 40.58
ibm07 829 291 15047 47,771,700 17.30 610.58 46,887,900 1.85% 7.03 59.38% 86.01
ibm08 968 301 16075 53,491,000 17.35 917.82 52,933,700 1.04% 4.64 73.27% 119.87
ibm09 860 253 18913 64,156,000 17.14 759.60 62,747,600 2.20% 3.82 77.73% 99.52
ibm10 809 786 27508 136,315,000 18.54 1915.04 133,782,000 1.86% 16.16 12.85% 53.95
ibm11 1124 373 27477 98,677,800 17.78 1501.49 94,878,900 3.85% 8.95 49.66% 57.6
ibm12 582 651 26320 120,516,000 18.80 1100.95 119,978,000 0.45% 15.98 14.99% 32.10
ibm13 530 424 27011 114,411,000 18.29 638.21 110,913,000 3.06% 9.69 47.02% 13.67
ibm14 1021 614 43062 240,371,000 22.65 1266.23 219,871,000 8.53% 8.71 61.56% 57.42
ibm15 1019 393 52779 278,768,000 13.98 2172.13 272,761,000 2.15% 8.13 41.81% 32.97
ibm16 633 458 47821 327,233,000 19.56 997.38 313,025,000 4.34% 11.52 41.13% 19.02
ibm17 682 760 56517 391,821,000 21.91 1618.57 368,221,000 6.02% 9.78 55.35% 43.36
ibm18 658 285 42200 263,100,000 18.45 1012.85 246,894,000 6.16% 3.45 81.32% 23.66
Avg. / / / / / / / 3.58% / 67.75% /

* WS=whitespace; RT=runtime; ∆(HPWL) and ∆(WS) represent the reduction ratios of the corresponding metrics.

To show the robustness of our method, we randomly select some
modules such that the pre-placed ones make up 20% of all modules. One
assumption about PPMs is that they are usually placed in good locations.
Otherwise, the floorplan utilization can never be improved since the
outline is determined by those poorly placed modules. In our experiment,
we notice that the results after legalization are good enough for setting
the locations of PPMs. Hence, this part of experiment is conducted as
follows.

1) Legalize the results from Corblivar.
2) Select the modules to be fixed.
3) Fix the locations of PPMs according to the legalization result.
4) Perturb the locations of movable modules.
5) Run our method to verify its robustness and effectiveness.
Experimental results are shown in Table I, which demonstrate that we

can retrieve a legal floorplan even with PPMs. Meanwhile, a compact
floorplan can still be generated, as shown in Figure 7b.

V. CONCLUSION

In this paper, we propose a two-step whitespace removal framework,
which can be used as a postprocessing step for any floorplanning tool.
Several methods have been proposed to reduce whitespace under the
fixed-outline and pre-placement-module constraints. Experimental results
show that our methods are practical and scalable. Future works may
include modeling more PPA-related constraints, such as routing conges-
tion, timing, etc. Also, an algorithm to produce a near legal solution
with rectilinear shape modules modeled will help further improve the
performance of the current floorplanning toolchain. Last but not the least,
analytical methods still need investigation to better model floorplanning
specific characteristics, such as rectilinear shape, changeable rectangular
shape, gaps to the final floorplans, etc.

REFERENCES

[1] J. Knechtel, E. F. Young, and J. Lienig, “Planning massive interconnects
in 3-d chips,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 11, pp. 1808–1821, 2015.

[2] A. B. Kahng, “Classical floorplanning harmful?,” in Proceedings of the 2000
international symposium on Physical design, pp. 207–213, 2000.

[3] S. N. Adya and I. L. Markov, “Fixed-outline floorplanning: Enabling hierar-
chical design,” IEEE TVLSI, vol. 11, no. 6, pp. 1120–1135, 2003.

[4] Y. Zhan, Y. Feng, and S. S. Sapatnekar, “A fixed-die floorplanning algorithm
using an analytical approach,” in Proceedings of the 2006 Asia and South
Pacific Design Automation Conference, pp. 771–776, 2006.

[5] J.-M. Lin and Z.-X. Hung, “Ufo: Unified convex optimization algorithms for
fixed-outline floorplanning considering pre-placed modules,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 30,
no. 7, pp. 1034–1044, 2011.

[6] T. Koide, S. Wakabayashi, and N. Yoshida, “Pin assignment with global
routing for vlsi building block layout,” in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pp. 1575–1583, 1996.

[7] J. Lienig and K. Thulasiraman, “A genetic algorithm for channel routing in
vlsi circuits,” Evolutionary Computation, vol. 1, no. 4, pp. 293–311, 1993.

[8] C. C. Chu and E. F. Young, “Nonrectangular shaping and sizing of soft
modules for floorplan-design improvement,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 23, no. 1, pp. 71–79,
2004.

[9] Gurobi Optimization Inc., “Gurobi optimizer reference manual.” http://www.
gurobi.com, 2016.

[10] B. Xu, S. Li, C.-W. Pui, D. Liu, L. Shen, Y. Lin, N. Sun, and D. Z. Pan,
“Device layer-aware analytical placement for analog circuits,” in Proceedings
of the 2019 International Symposium on Physical Design, pp. 19–26, 2019.

[11] W. Dai, L. Wu, and S. Zhang, “GSRC Benchmarks.” http://vlsicad.eecs.
umich.edu/BK/GSRCbench/, 2000.

[12] Microelectronics Center of North Carolina (MCNC), “MCNC Benchmarks.”
http://vlsicad.eecs.umich.edu/BK/MCNCbench/.

[13] A. N. Ng, R. Aggarwal, V. Ramachandran, and I. Markov, “IBM-HB+
benchmarks.” http://vlsicad.eecs.umich.edu/BK/ISPD06bench/, 2006.

[14] J. Knechtel, “Corblivar.” https://github.com/IFTE-EDA/Corblivar.
[15] J.-M. Lin, T.-T. Chen, Y.-F. Chang, W.-Y. Chang, Y.-T. Shyu, Y.-J. Chang,

and J.-M. Lu, “A fast thermal-aware fixed-outline floorplanning methodology
based on analytical models,” in 2018 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pp. 1–8, IEEE, 2018.

http://www.gurobi.com
http://www.gurobi.com
http://vlsicad.eecs.umich.edu/BK/GSRCbench/
http://vlsicad.eecs.umich.edu/BK/GSRCbench/
http://vlsicad.eecs.umich.edu/BK/MCNCbench/
http://vlsicad.eecs.umich.edu/BK/ISPD06bench/
https://github.com/IFTE-EDA/Corblivar

