
Clock-Aware UltraScale FPGA Placement
with Machine Learning Routability Prediction

(Invited Paper)

Chak-Wa Pui , Gengjie Chen , Yuzhe Ma , Evangeline F. Y. Young , and Bei Yu

Department of Computer Science and Engineering,

The Chinese University of Hong Kong, NT, Hong Kong
{cwpui,gjchen,yzma,fyyoung,byu}@cse.cuhk.edu.hk

Abstract—As the complexity and scale of circuits keep growing,
clocking architectures of FPGAs have become more complex to meet the
timing requirement. In this paper, to optimize wirelength and meanwhile
meet emerging clocking architectural constraints, we propose several
detailed placement techniques, i.e., two-step clock constraint legalization
and chain move. After integrating these techniques into our FPGA
placement framework, experimental results on ISPD 2017 benchmarks
show that our proposed approach yields 2.3% shorter routed wirelength
and the running time is 2× faster compared to the first place winner
in the ISPD 2017 contest. Moreover, we explore the possibilities to
use machine learning-based methods to predict routing congestion
in UltraScale FPGAs. Experimental results on both ISPD 2016 and
ISPD 2017 benchmarks show that our proposed congestion estimation
model is a good approximation to the one obtained from Vivado and
can lead to good placement results compared to the previous methods.

I. INTRODUCTION

Field-programmable gate array (FPGA) is an integrated circuit

designed to be reconfigurable by a customer after manufacturing.

Compared to application specific integrated circuit (ASIC) and

central processing unit (CPU) , FPGA is a good trade-off between

performance and cost due to its faster time-to-market and simpler

design cycle. With its unprecedentedly increasing logic density,

FPGA has become more competitive with ASICs especially in

application specific implementations, such as deep learning [1] and

data center [2].

Most of the previous researches on FPGAs placement were

conducted on the island-style FPGAs, which is a 2D array of

configurable logic blocks (CLBs), I/O pads, routing channels,

random access memory blocks (RAMs), digital signal processing

blocks (DSPs), etc. The placement algorithms can be classified into

three major categories: (1) simulated annealing-based approach, (2)

partitioning-based approach, and (3) analytical approach. The widely

used academic tool VPR [3] applies simulated annealing as its

main tool to optimize objectives such as wirelength, timing, etc.

Partitioning-based approaches like [4] shorten the running time by

recursively partitioning a design and placing them hierarchically.

However, these two kinds of placement methods cannot get a good

balance between quality and running time. As the gap between

FPGAs and ASICs is getting smaller in recent years, analytical

approaches become more favorable due to its high efficiency and

good quality in ASIC placement. In [5], SimPL [6] is applied to

FPGA placement, which yields the potential of using analytical

methods in FPGA placement. In [7], [8], NTUplace is used as the

basic framework of the proposed analytical FPGA placer. Besides

the placers mentioned above, there are also other analytical placers

like LLP [9], StarPlace [10] and QPF [11].

These analytical placers mainly focus on how to migrate the tradi-

tional ASIC placement methods to FPGA placement and are usually

applying on the CLB level rather than the lookup tables (LUTs)

and flip-flops (FFs) level. Most of them resolve the timing [12] or

routability [13], [14] issues during the packing step which packs

LUTs and FFs into CLBs. However, forbidding the LUTs and FFs

to move out of a CLB during placement may yield worse quality

than those that do not. Moreover, when the architecture becomes

more complex such as Xilinx UltraScale, the approaches like above

may not work well. Recently, several placement tools [15]–[17] are

proposed for Xilinx UltraScale FPGAs. But they can only handle

single clock design, which is not practical today. Hence, a flat

analytical clock-aware placement for modern heterogeneous FPGAs

is needed.

Routability is always an issue in placement for both FPGAs

and ASICs. There are lots of previous works focusing on reducing

routing congestion in FPGA placement. To reduce congestion, some

placers handle it during packing while others may do congestion-

driven global placement. Most of these methods need to estimate

the congestion level in order to reduce congestion. In [18], the

congestion map is built according to the net bounding box (BB).

The routing congestion of a site is measured by the number of

BBs overlapping with it. In [15], both HPWL and BBs are used

to measure congestion. Some other works like [16] use ASIC

global router to estimate the routing congestion. Recently, there

are several works [19]–[21] for ASIC designs that use machine

learning to predict design-rule-check (DRC) violations. Since DRC

violation is highly related to routing congestion, these works yield

the possibilities to use machine learning to predict routing congestion

in FPGAs.

In this paper, we propose several placement techniques for

UltraScale FPGAs to meet the challenges of clock constraints,

routability, wirelength. We integrate all the techniques into our

previous framework RippleFPGA [15] to evaluate the performance.

The major contributions of this paper are summarized as follows:

• A two-step displacement-driven legalization is introduced to

remove all clock constraint violations. It includes two stages

which are clock region planning and half column legalization.

In clock region planning, shrinking and expanding will try to

remove all the clock region constraint violations. Under some

assumptions, it can guarantee to give a global placement result

that satisfies the clock region constraint. A greedy algorithm is

then performed to remove all the violations of the half column

constraint. In the experimental results, this legalization method

is shown to be efficient and effective.

• Chain move is proposed to put a cell into a desired site

efficiently. It can be modified to optimize different objectives,

e.g. displacement, HPWL, timing, etc. In legalization, it is used

to reduce the total and maximum displacement. In detailed

placement, it is used to further optimize the HPWL by moving

the cells to their optimal regions.

• We study the performance of different routability prediction

methods in FPGAs. Several features, machine learning models

978-1-5386-3093-8/17/$31.00 ©2017 IEEE 929

IO

SLICE

DSP

RAM

Switch Box

Fig. 1: An illustration of Xilinx UltraScale architecture.

and training methods are discussed. According to the experi-

mental results, a linear regression method is used to estimate the

routing congestion. This method can closely approximate the

routing congestion estimation generated by Vivado and guide

the placement to generate good results.

• All the above techniques are incorporated into our FPGA placer

RippleFPGA [15]. The experimental results shows that we can

produce better results in terms of routed wirelength and running

time compared with the winning teams of the ISPD 2017

contest.

The remainder of this paper is organized as follows. Section II

gives an introduction to our target FPGA architecture and the prob-

lem formulation. Section III-V introduces details of our proposed

techniques including two-step clock constraint legalization, chain

move, and machine learning-based congestion estimation. Section VI

gives an overview of our placement framework and how the above

techniques are integrated into the framework. Section VII shows the

experimental results, followed by conclusion in Section VIII.

II. PRELIMINARIES

A. Target Architecture

In this paper, the target FPGA architecture is Xilinx UltraScale

VU095 [22], whose layout is shown in Fig. 1. There are four kinds of

sites (SLICE, RAM, DSP and IO) on the chip and they are connected

by wires through switch boxes. The given netlist of an FPGA design

consists of five types of cells, which are LUTs, FFs, RAMs, DSPs

and IOs. Each type of cells can only be put into sites of its own

type and a site can accommodate multiple cells. Due to the internal

wires inside a SLICE, routing the nets between two connected LUT

and FF in the same site may use less routing resources. According

to [23], when placing LUTs and FFs into SLICEs, extra legalization

rules need to be considered besides the cell number constraints. For

example, the total number of input signals of LUT(2i) and LUT(2i+
1) should be less than 7, the set/reset signal of the FFs in the same

half of a SLICE should be the same, etc.

The clocking architecture of Xilinx UltraScale is similar to ASICs.

It can route clocks from their clock sources all the way to all of

their loads through a mesh-like routing structure, which gives big

flexibility to how the clocks are routed. The chip is divided into a

5× 8 grid of clock regions such that each clock region consists of

about 30× 60 sites and a clock is in a clock region if the bounding

box of its loads overlaps with the clock region. Each clock region

is further divided into a grid of half columns such that each half

column consists of 2 × 30 sites and a clock is in a half column if

one of its loads is inside the half column. To utilize such a routing

5x8 clock regions

15x2 half columns

2x30 sites

…

…

Fig. 2: An illustration of the routing architecture.

architecture shown in Fig. 2, the numbers of clocks inside each half

column and clock region are limited to 12 and 24 respectively.

B. Problem Formulation

Given the FPGA architecture and a design net-list, we need to

determine the positions of the cells on the FPGA to minimize the

routed wirelength subject to the following constraints:

• Every cell is assigned to a position on the FPGA that satisfies

the placement constraints [23];

• The number of clocks inside each half column is less than 13

and a clock is in a half column if one of its loads is inside that

half column;

• The number of clocks inside each clock region is less than 25

and a clock is in a clock region if the bounding box of its loads

overlaps with that clock region.

III. TWO-STEP CLOCK CONSTRAINT LEGALIZATION

As mentioned in Section II, a clock region or half column is clock

overflowed if the number of clocks inside exceeds the limit. In this

section, overflow refers to clock overflow. In order to remove all of

the overflows, a two-step clock constraint legalization is performed,

it is consisted of two steps : clock region planning and half column

legalization. In clock region planning, violations of the clock region

constraint in global placement will be removed and a bounding box

(BB) is assigned to each clock to limit the cell movement. After

clock region planning, each cell should remain in the intersection

of the BBs of the clocks that it is connected to. In stage two, a

displacement-driven half column legalization is performed in which

the overflow of half column will be reduced gradually. After half

column legalization, all the subsequent moves cannot violate the

half column constraint.

A. Clock Region Planning

Our clock region planning can be divided into two stages: shrink-

ing and expanding. In the following, one unit in the shrinking and

expanding stages is at most the height or width of a clock region

(60 or 30 sites).

1) Shrinking Stage: A clock region is overflowed if the number of

clock BBs overlapping with it is more than 24. In the shrinking stage,

given a global placement result with overflowed clock regions, we

need to minimize the disturbance to the placement while removing

those violations. Before introducing the details, we first need to prove

Theorem 1.

930

1 2 2 1 0

1 2 3 2 1

2 3 4 2 1

1 2 3 2 1

1 1 1 0 0

(a) The BBs of clocks
in the original global

placement.

1 2 2 1 0

1 2 2 2 1

1 2 2 2 1

1 2 2 2 1

1 1 1 0 0

(b) The BBs of clocks
after shrinking.

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

(c) The BBs of clocks
after expanding.

Fig. 3: Assuming the maximum number of clocks in a clock region

is 2, an example of clock region planning.

Theorem 1. Suppose each cell is only connected to one clock. Given
a grid g of clock regions R and an overflowed region ri, if there
exists at least one neighboring regions whose overflow is smaller,
there always exists a direction such that shrinking the bounding box
of a clock in ri to that direction by one unit will reduce the overflow
of ri by one and not increase the overflow of any other clock regions.

Proof. It is clear that shrinking the bounding box of a clock will not

increase the overflow of any other clock regions if each cell is only

connected to one clock. Let C be the set of clocks whose bounding

boxes overlap with ri but do not overlap with at least one of the

neighboring regions of ri. If C �= ∅, we can shrink the bounding box

of a clock ci ∈ C in a direction by 1 unit and reduce the overflow of

ri by 1. If C = ∅, all the clocks in ri will be in all its neighboring

regions. But this contradicts with the fact that the overflow of its

neighboring regions is smaller.

As our experiment shows, only cells containing FFs will have

more than one clocks since their clock enable (CE) and set/reset

(SR) signals may also connect to the clock signals. However, the

BBs of these clock signals usually cover the whole placement and

thus moving these cells will not increase the overflow of other clock

regions. To minimize the displacement, we will only shrink a clock

BB by 1 unit at a time and continue to shrink them until there

is no overflow as shown in Algorithm 1. In every round, we will

try to reduce the overflow of the most overflowed but shrinkable

clock region. In line 5, GetBestDir is used to determine the

direction to shrink the BB of clock clkj such that the displacement

is smallest. To be specific, Shrink is invoked for four times to

get the displacement of shrinking the BB of clkj to each direction

respectively. An example of how we shrink the BB of a clock in

LEFT direction is shown in lines 13–24 and the other three directions

can be deduced accordingly. After getting the clock net and direction

that incur the smallest displacement, we will do the corresponding

shrinking before starting the next round. When the shrinking stage

finishes, the global placement result will satisfy the clock region

constraint and there will be no further violation as long as the cells

of each clock stay inside its BB. An example of the shrinking stage

is given in Fig. 3(b).

2) Expanding Stage: Since a cell’s movement is limited by the

intersection of the BBs of the clocks connected to the cell, if the

intersection area is too small, there will be very limited flexibility in

the later placement stages, giving results of poor quality. Therefore,

in the expanding stage, the BB of each clock will be expanded as

long as there is no violation of the clock region constraint. Similar

to the shrinking stage, we will only increase either the width or the

height of a BB by 1 unit in each round. Starting with the BB with

the highest cell density calculated by Equation (1), we will try all

Algorithm 1 Shrinking Stage

Require: A global placement result.

1: while there are overflowed clock regions do
2: rgni ← the most overflowed clock region;

3: (minDisp, bestDir, net) ← (inf,NULL,NULL);
4: for all clkj in rgni do
5: (dir, disp) ←GetBestDir;

6: if disp �= inf and minDisp > disp then
7: (minDisp, bestDir, net) ← (disp, dir, clkj);
8: end if
9: end for

10: Shrink(net, rgni, bestDir);

11: Update clock region overflow info;

12: end while

13: function Shrink(clkj , rgni, LEFT)

14: bclk ← BB of clkj , brgn ← box of rgni;

15: if brgn.lx ≤ bclk.hx ≤ brgn.hx then
16: for all cell c connected to clkj in rgni do
17: if brgn.lx ≤ c.x ≤ bclk.hx then
18: c.x ← brgn.lx;

19: end if
20: end for
21: return true;

22: end if
23: return false;

24: end function

the four directions and choose the one that makes the area of the

resulting BB largest while incurring no violation.

cell densityclki
=

total area of cells connected to clki
area of the BB of clki

. (1)

If the BB of the clock with the highest cell density cannot be

expanded, we will try the clock with the second highest cell density

and so on until a BB is selected to be expanded. If no BB is expanded

in one round, the whole expanding stage is completed. An example

of the expanding stage is given in Fig. 3(c).

B. Half Column Legalization

During each round of half column legalization, the most over-

flowed half column is selected and a clock whose removal will

induce the smallest cell displacement will be moved away from

the overflowed half column. When a clock is moved away from

a half column, each load will be moved to its nearest site in another

half column. The move is legal if it does not incur more overflow

in the half column that the target site belongs to. After a clock is

moved away from the most overflowed half column, another round

of move will be invoked. This process will continue until there is

no overflowed half column.

IV. CHAIN MOVE

Given a partially placed design, the complex legalization rules of

modern FPGAs make it much harder to move a cell to a desired

location. Inspired by [24]–[26], chain move is proposed to help

moving cells into their desired positions, e.g. the sites inside their

optimal region or the sites that will only incur small disturbance to

the global placement result.

931

A. General Chain Move Algorithm

Given a cell and an objective, a sequence of cell moves is found

such that all the cells are placed to one of its candidate sites and the

objective value of the resulting placement is better than that of the

original placement. This sequence of cell moves is found by a DFS-

based algorithm. First a set of candidate sites S is found depending

on the objective. We then try if the current cell to be moved cj can

be directly put into a site s ∈ S. If so, the search ends. Otherwise,

we will try to find a cell ck in a site s ∈ S such that cj can be

put into s if ck is moved away. In our implementation, we limit

the number of trials of each cell to be 35. If such a cell ck can be

found, we let it to be the next cell to be moved and continue our

search. The number of moved cell in the chain is limited to 5 in our

implementation.. Moreover, we will randomly decide the number of

trials in each site, which helps to find the next cell to be moved more

quickly since it may take more trials in some sites while others may

take less depending on the cells inside. An example of chain move

is shown in Fig. 4.

c3
rgn1

c0

rgn0

rgn2

c1 c2

Fig. 4: An example of chain move. The sites in rgn0, rgn1, rgn1

and rgn2 are the candidate sites of c0, c1, c2 and c3 respectively.

Unlike [24]–[26] which all optimize HPWL, our chain move can

be easily adapted to optimize different objectives by selecting dif-

ferent sets of cells. Similar to [25], [26], our chain move in detailed

placement will move cells to their optimal regions. Compared to

[26], ours is much more flexible because the last position need not

be the position of the first cell in the chain, and we can guarantee

that all the placed cells are still legal after chain move while only

cell density is maintained in [25]. Unlike [24], we limit the breadth

and depth of the search to maintain a good trade-off between quality

and running time. Since the legality checking is more complicated

than the overlap checking in [24], determining whether a cell can

be put into a site is much more time consuming, which makes it

necessary to limit the number of trials in a search.

B. Chain Move-based Legalization

For BLEs, a chain move-based displacement-driven legalization

shown in Algorithm 2 is used to place them in legal positions.

Candidate sites at displacement d are first obtained (line 4). We

then try to find a legal site for the cell by attempting the candidate

sites in ascending order of the HPWL incurred. If such a site is

found and d is small, we continue to legalize the next cell. If d
is large, chain move will be invoked in the maximum displacement

optimization mode (line 8). If no site of displacement d can be found,

chain move will be invoked in the displacement optimization mode

(line 13).

As discussed in Section IV-A, different objectives can be op-

timized by selecting different sets of cells. In the displacement

optimization mode, the set S of candidate sites for a cell cj are

selected such that s ∈ S iff,

dist(s, cj)

{
= d, if cj is the first cell in the chain,

≤ dist(sj , cj), otherwise,

Algorithm 2 Chain Move-Based Legalization

Require: A global placement result.

1: for all BLE ci do
2: d ← 0;

3: while ci is not placed do
4: S ← sites whose distance to ci is d;

5: Sort S in ascending order of HPWL;

6: if ci can be put into s ∈ S then
7: if d ≥ 2 then
8: Optimize max disp. using chain move;

9: else
10: place ci in s;

11: end if
12: else
13: Optimize disp., try to place ci by chain move;

14: end if
15: d ← d+ 1;

16: end while
17: end for

c2

c3 c4c1

c5

(a) Sequential

c2
c3 c4c1

c5

(b) Chain Move-Based

Fig. 5: Comparison of the total displacement between the result ob-

tained by sequential legalization and chain move-based legalization.

where sj is the site where cj is currently placed and dist(sj , cj)
is the distance between sj and cj . In the maximum displacement

optimization mode, the set S of candidate sites for a cell cj are

selected such that s ∈ S iff,

dist(s, cj) +
∑

ci∈C\cj
dist(sST

i , ci) ≤
∑
ci∈C

dist(si, ci)

and the distance between s and cj is less than d (dist(s, cj) < d),

where C is the set of cells in the chain and sST
i is the target site of

ci selected by chain move.

Compared with the traditional sequential legalization, our algo-

rithm can reduce quality degradation due to some bad decisions

made by legalizing cells in the early stage. Two examples are given

in Fig. 5 and Fig. 6 where cell ci is legalized before cell cj whenever

i < j. In Fig. 5, due to the bad decision made by placing c2, the

displacement of legalizing these cells is 4. However, in chain move-

based legalization, chain move will be invoked in the displacement

optimization mode when placing c3 and the total displacement of

legalizing these cells is reduce to 1. In Fig. 6, chain move will slight

shift c3 and c4 in the maximum displacement optimization mode and

reduce the maximum displacement from 3 to 1 while not increasing

the total displacement.

C. Chain Move-based Detailed Placement

During detailed placement, there are two kinds of moves for BLEs

outside their optimal regions. To be specific, for such a BLE, we will

first try to place it in its optimal region. If it is not possible, we will

try those sites that are closer to its optimal region than its current

position. If a BLE cannot be moved by the above two operations,

the chain move discussed in Section IV-A will be invoked in the

detailed placement mode. The objective is to move the BLE to its

932

c2 c3c1

c8

c6c5 c7c4

(a) Sequential

c2 c3c1

c8

c6c5 c7c4

(b) Chain Move-Based

Fig. 6: Comparison of the maximum displacement between the

result obtained by sequential legalization and chain move-based

legalization.

optimal region by a set of cell moves such that all the moved cells

are in their optimal regions in the resulting placement. To achieve

this, the candidate sites S for a cell cj are the sites inside its optimal

region.

V. MACHINE LEARNING-BASED CONGESTION ESTIMATION

To estimate the routing congestion more precisely during place-

ment, a congestion map is needed. In this section, we will study how

to leverage machine learning to build a congestion model. To better

understand how different machine learning methods perform on the

congestion estimation, we will compare and discuss the performance

of a few learning models. Moreover, we will discuss the motivations

and benefits of using machine learning-based congestion estimation

on FPGAs placement.

A. Congestion Models

Since more than 95% of the routing resources in FPGA placement

are consumed by connections between SLICEs, our congestion

model will only consider the congestion levels of sites whose types

are SLICE. First, the FPGA is divided into global routing cells

(gcells) in a similar way as in [15] such that a gcell corresponds

to a switch box and a SLICE is mapped to only one gcell. For each

site, the values of its features are equal to those of the gcell covering

it and a machine learning-based model is used to predict the routing

congestion of each site. In our estimation models, the predicted

congestion value represents the percentage of routing resources used

in that site.

Intuitively, the number of internal pins within a gcell and the

number of BBs covering a gcell have significant impact on routabil-

ity. Therefore, we extract three features from each gcell, which are

defined as follows,

x1 =
∑

m∈Ni

wm · HPWLm

#gcellm
, (2)

x2 =
∑

m∈Ni

#pins of net m, (3)

x3 =
∑

m∈Ni

pm,i

#pins of net m
× wm · HPWLm

#gcellm
, (4)

where wm is a weight proportional to the number of pins of net m,

Ni is the set of nets connected to the gcell covering site si, pm,i is

the number of pins of net m inside the gcell covering site si and

#gcellm is the number of gcells covered by net m. The first two

features x1 and x2 capture the pin and overlapping BB information

respectively while x3 captures their combined effects.

In the following, three machine learning models will be intro-

duced: (1) local linear model, (2) hierarchical hybrid model, (3)

global linear model.

TABLE I: Average r2 score, MPE (%) comparison between different

training methods and congestion estimation models.

Model∗ Unified Independent
Avg. r2 Avg. MPE Avg. r2 Avg. MPE

Local Linear Model 0.891 0.161 0.878 0.176
Hierarchical Hybrid Model - - 0.833 0.163

Global Linear Model 0.943 0.115 0.933 0.128
∗ The model trained by the unified method is trained and tested by the data

from all designs while the models trained by the independent method are
only trained and tested by the data from their corresponding designs.

1) Local Linear Model: In our local linear model, only the

information of the site itself will be used to predict its congestion.

The model is represented as,

yllm = fllm(x) =

3∑
i=1

θixi. (5)

2) Hierarchical Hybrid Model: Our hierarchical hybrid model

consists of two stages which consider local and global congestion

information respectively. In the first stage, a linear model defined

by Equation (5) is used to estimate the local congestion, denoted

as yhm1. In the second stage, a non-linear model is used to capture

the congestion information of nearby sites, whose result is denoted

as yhm2. To be specific, for each site, we use the the support vector

machine (SVM) as our machine learning model with the yhm1 value

of the site and its neighboring eight sites as features. Finally, we use

yhm2 as the estimation result of each site, which captures both local

and neighborhood congestion information.

3) Global Linear Model: In this section, the non-linear model in

the second stage of the hierarchical hybrid model is substituted by

a linear model. Since a two-stage linear model is equivalent to a

single stage linear model, we use a single linear model to represent

it. To be specific, for each site, 27 features are extracted, which are

the x1, x2 and x3 values of the site itself and its neighboring eight

sites, which can be formulated as

yglm = fglm(x) =

27∑
i=1

θixi. (6)

B. Training and Regression Results

To train the models, we extract the feature vectors from the

placement and obtain the congestion estimation values from Vivado.

We generate these data from the placement results of our placer for

ISPD 2016 and ISPD 2017 benchmarks. Noted that, since there are

empty sites in the placement, we only use a site as test data if it

satisfies at least one of the two following conditions,

• the site is not empty in the placement,

• the congestion value of the site is not equal to zero in the

reference congestion map.

We then divide the data from each design into training set (70%)

and testing set (30%), which are used to build the models and test

the reliability of the models respectively.

There are two different options in model training, one is to train a

unified model for all designs while the other is to train independent

models for different designs. The benefit of a unified model is that

if gets more training data and can be used to predict the congestion

of an unknown design. The benefit of using different models for

different designs is that it can better capture the characteristics of

different designs and the training time is much shorter especially for

those high timing complexity models like SVM.

TABLE I shows the r2 score, mean percentage error (MPE) of

our proposed estimators trained by different methods. The result

933

(a) (b)

Fig. 7: Congestion Maps of CLK-FPGA13 in ISPD2017 contest: (a)

routing congestion predicted by Vivado; (b) our estimation.

demonstrates how accurately our proposed model can predict the

congestion. Compared to the global linear model, the hierarchical

hybrid model does not perform as good and its results are very close

to the local model. The most likely underlying reason is that the

congestion estimation produced by Vivado has a linear relationship

with our features. Compared with the local linear model, the global

linear model performs better since it captures both local and global

congestion information. Hence, we will use the global linear model

as our congestion estimation model. Note that the output of the

regression model is close to the estimated value of Vivado according

to the mean percentage error. Using the global linear model, we can

predict congestion quite accurately as illustrated in Fig. 7.

As shown in TABLE I, we have studied the performance of

the two training methods. Since the training time complexity of

the hierarchical hybrid model is much higher than that of the

linear model and its performance is not as good, we only compare

the performance of linear models trained by unified method and

independent method. As one can see, the performance of the unified

method is slightly better than that of the independent method. The

underlying reason is that most of the designs are similar to each

other in terms of technology, constraints, etc. and thus can be

represented by one model. The advantage of the independent training

method over the unified training method will be more obvious if the

characteristics of each design are very different, because the unified

method may not be able to capture the differences between designs

with only one model. However, when the differences between the

designs’ characteristics are small, the unified model actually gets

more data for training compared to the independent model, which

explains why the average performance of the unified method is

better than that of the independent method in our dataset. Another

drawback of having multiple independent models is that each model

may be over-fitted (due to the lack of data) and thus cannot be used

to predict the congestion levels of an unknown design. One solution

is ensembling all the individual models. To be specific, the prediction

of a given feature vector x is obtained by combining the output of

all the existing models, which can be represented by

y =
N∑
i=1

wifglm,i(x), (7)

where fglm,i is the model trained with design i and wi is the weight

of model i which is set to 1
N

in our implementation. We also test

the performance of the ensemble method and compare it with the

method of training one single model using the data across multiple

TABLE II: Average r2 score, MPE (%) comparison between

unified model and ensemble.

Model1
Unified+2 Ensemble

Avg. r2 Avg. MPE Avg. r2 Avg. MPE

Global Linear Model 0.914 0.172 0.926 0.163
1 “Unified+” represents the global linear model trained by our unified

method and “Ensemble” represents the model defined in Equa-
tion (7).

2 The difference between “Unified+” and “Unified” in Table I is that
the training set of “Unified+” is 12 randomly selected designs while
that of “Unified” is all of the designs.

designs. We randomly select 12 designs for training and use the

rest for testing. The result is shown in TABLE II. According to the

results of our experiments, both methods can generalize well to other

designs.

C. Comparison

As mentioned in Section I, previous works on FPGAs placement

use different methods to estimate routing congestions. However,

these methods all have their shortcomings. Probabilistic models like

[15], [18] may have good correlation with the relative congestion

level but it is hard to use their absolute values to determine whether

a site is congested or not. Given the routing capacity of a design,

global routers can perform better since they “actually” do the routing

instead of using a probabilistic model only. But due to IP issues, it

is difficult to obtain information of the routing architecture or the

routing capacity of the FPGAs.

Similar to other EDA tools in ASICs, design tools of FPGAs like

Vivado will also give users an estimation of the routing congestion.

If we assume that the estimation from the tool itself can guide the

placement well, it is worthwhile to build a congestion model that

can approximate well the congestion estimation of the tool. Another

benefit of approximating the estimation of the tool is that it can give

the users a good sense of how congested a site is. The last but not

least benefit of using machine learning is that it saves a lot of effort

in parameters tuning which is a big shortcoming of the previous

methods. All of the parameters needed to predict the congestion

levels are generated automatically by machine learning, however,

probabilistic models need to find the correspondence between the

real congestion level and the predicted value while the capacity

values of the global routers also need to be carefully chosen.

VI. RIPPLEFPGA

In this section, we summarize our framework and introduce how

the proposed techniques are incorporated into it. As shown in Fig. 8,

the framework is based on RippleFPGA [15] and we mainly refine

the detail placement stage to improve the quality and to meet the

new clock constraints.

Flat netlist

Partition re-allocation

Packing

Legalization

Detailed placement

Placed
designGlobal placement

Clock planning

Fig. 8: The overall flow of our proposed placer.

934

TABLE III: Routed wirelength and running time (s) comparison with the ISPD 2017 contest winners.

Design
RippleFPGA 1st Place 2nd Place 3rd Place

WL ratio Time ratio WL ratio Time ratio WL ratio Time ratio WL ratio Time ratio

CLK-FPGA01 2011452 1 288 1 2208170 1.098 530 1.840 2209328 1.098 2686 9.326 2268532 1.128 231 0.802
CLK-FPGA02 2167861 1 266 1 2279171 1.051 521 1.959 2273729 1.049 2788 10.481 2504444 1.155 218 0.820
CLK-FPGA03 5265206 1 583 1 5353071 1.017 1038 1.780 6229292 1.183 3740 6.415 5803110 1.102 447 0.767
CLK-FPGA04 3606567 1 380 1 3697950 1.025 725 1.908 3817377 1.058 2850 7.500 4085670 1.133 309 0.813
CLK-FPGA05 4660136 1 569 1 4692356 1.007 943 1.657 4995177 1.072 3164 5.561 5180916 1.112 444 0.780
CLK-FPGA06 5736998 1 591 1 5588507 0.974 1075 1.819 5605573 0.977 3570 6.041 6216898 1.084 471 0.797
CLK-FPGA07 2325787 1 304 1 2444359 1.051 585 1.924 2504544 1.077 3698 12.164 2676088 1.151 247 0.813
CLK-FPGA08 1778292 1 247 1 1885632 1.060 482 1.951 1989632 1.119 2504 10.138 2057117 1.157 198 0.802
CLK-FPGA09 2530105 1 327 1 2601161 1.028 600 1.835 2583442 1.021 3158 9.657 2813538 1.112 269 0.823
CLK-FPGA10 4495500 1 512 1 4464341 0.993 868 1.695 4770168 1.061 2971 5.803 4839765 1.077 414 0.809
CLK-FPGA11 4189622 1 455 1 4182726 0.998 768 1.688 4207699 1.004 2535 5.571 4777177 1.140 369 0.811
CLK-FPGA12 3387586 1 409 1 3368698 0.994 744 1.819 3376930 0.997 3007 7.352 3739517 1.104 338 0.826
CLK-FPGA13 3833106 1 441 1 3815718 0.995 822 1.864 3920965 1.023 3155 7.154 4320345 1.127 359 0.814

Average 1.000 1.000 1.023 1.826 1.057 7.936 1.122 0.806

In the target architecture, there is a highly unbalanced routing

supply in the horizontal and vertical directions. Hence, after an

initial global placement, the input netlist will be partitioned and

the partitions will be reallocated according to the aspect ratio of the

chip to reduce congestion in the first stage of our flow.

After partition reallocation, LUTs and FFs are packed into basic

logic elements (BLEs) to reduce the inter-connections between sites

in routing. After packing, the netlist is modified such that LUTs and

FFs are replaced by BLEs.

An upper bound and lower bound based global placement is then

performed on the modified netlist, where the wirelength is optimized.

Our global placement engine consists of two stages where HPWL

and routing congestion are optimized respectively. In the second

stage, a congestion-driven global placement step will be performed

to reduce the routing congestion if there is any. We use the machine

learning method in Section V to predict the routing congestion

instead of the original probabilistic model.

After global placement, the clock region planning introduced in

Section III-A will be performed to ensure no violation of the clock

region constraint.

In legalization, the global placement result is first legalized

regardless of the half column constraint. The half column legalization

introduced in Section III-B will then be performed to remove all the

violations of the half column constraint. Finally, detailed placement

at the BLE and site levels will be performed to further improve

wirelength. Chain move is applied in both legalization and detailed

placement to optimize displacement and HPWL respectively as

mentioned in Section IV.

VII. EXPERIMENTAL RESULTS

To evaluate our proposed method, the algorithms are implemented

in C++. The experiments were performed on a 64-bit Linux work-

station with Intel Xeon 3.7GHz CPU and 16GB memory, using the

benchmarks provided by the ISPD 2016 Routability-Driven FPGA

Placement Contest [23] and the ISPD 2017 Clock-Aware FPGA

Placement Contest [22].

In our experiments, we use the architecture of the commercial

device family, Xilinx UltraScale [27], for our comparative study.

The device’s aspect ratio and average spacing between blocks were

determined based on the Xilinx UltraScale VU095 architecture, the

latest 20nm FPGA chip. For fair comparison, all the placers were

executed with a single thread. We set Vivado to be in the same

configurations as in the ISPD 2016 and ISPD 2017 contest, which

uses two threads in routing and limits the running time to 12 hours.

TABLE III shows the routed wirelength and running time com-

pared to the winners of the ISPD 2017 contest. Columns “WL” and

TABLE IV: Comparison of HPWL and running time (s) before and

after applying the two-step clock constraint legalization (CCL).

Design
w/ CCL w/o CCL

HPWL ratio Time ratio HPWL ratio Time ratio

CLK-FPGA01 1582915 1 288 1 1582916.5 1.000 276 0.958
CLK-FPGA02 1577050.5 1 266 1 1577174.5 1.000 254 0.955
CLK-FPGA03 4059161.5 1 583 1 4060707.5 1.000 558 0.957
CLK-FPGA04 2716961 1 380 1 2717721.5 1.000 367 0.966
CLK-FPGA05 3532758.5 1 569 1 3533406.5 1.000 534 0.938
CLK-FPGA06 4485497.5 1 591 1 4486400.5 1.000 572 0.968
CLK-FPGA07 1708920 1 304 1 1708954 1.000 293 0.964
CLK-FPGA08 1355308 1 247 1 1354246.5 0.999 244 0.988
CLK-FPGA09 1946224.5 1 327 1 1945947.5 1.000 313 0.957
CLK-FPGA10 3505733 1 512 1 3506731.5 1.000 499 0.975
CLK-FPGA11 3270337.5 1 455 1 3270688.5 1.000 440 0.967
CLK-FPGA12 2592324 1 409 1 2593720.5 1.001 395 0.966
CLK-FPGA13 2927103 1 441 1 2926785.5 1.000 420 0.952

Average 1.000 1.000 1.000 0.962

“Time” list the wirelength and the computational time in seconds,

respectively. Our proposed placement can generate legal and routable

solutions for all the benchmarks. Compared to the 1st place winner

of the ISPD 2017 contest, our average routed wirelength is about

2.3% better and our running time is 2× faster than theirs. Due to the

efficient clock-aware placement framework, we can solve the largest

design in the benchmarks which contains about 1 million cells in

just 10 minutes.

TABLE IV shows that the running time and HPWL generated

by our framework compared with that obtained by neglecting the

clock constraints. Since a placement violating the constraints cannot

be routed by Vivado, we can only compare the HPWL instead

of the routed wirelength. Note that the only difference between

these two frameworks is that the steps in Section III are applied

in the first framework and all cell moves are not constrained by

the clock related constraints. The results show that the HPWLs of

these two frameworks are very close, which means that our proposed

framework can generate a placement satisfying the clock constraints

with very little overhead.

As discussed in Section V, we will use the unified trained global

linear model as our congestion prediction model. According to the

prediction from our model, our congestion-driven global placement

is never invoked to reduce congestion in ISPD 2017 benchmarks

since the designs are not congested. Hence, we use the ISPD 2016

benchmarks to test the quality of our congestion estimation model.

TABLE V shows a comparison of routed wirelength generated by

our framework before and after replacing the congestion estimation

model in [15] with the proposed one. Our proposed congestion model

can generate legal and routable solutions for all the benchmarks in

935

TABLE V: Routed wirelength comparison between different routing

congestion estimation models.

Design
[15]

ML-based
congestion model

WL ratio WL ratio

FPGA01 350060 1 350802 1.002
FPGA02 635044 1 634700 0.999
FPGA03 3251264 1 3251721 1.000
FPGA04 5492214 1 5411107 0.985
FPGA05 9909270 1 9911182 1.000
FPGA06 6144522 1 6143973 1.000
FPGA07 9593240 1 9520252 0.992
FPGA08 8087931 1 8036647 0.994
FPGA09 12062928 1 12123865 1.005
FPGA10 6972278 1 7020054 1.007
FPGA11 10918250 1 10462601 0.958
FPGA12 7239553 1 7605996 1.051

Average 1 0.999

ISPD 2016 benchmarks. Compared to the original model, our model

can lead to results of similar average routed wirelength. Although the

result obtained by the machine learning approach is just marginally

better than that by the probabilistic method, the machine learning

model can predict the percentage of routing resources used “directly”

while it’s needed to find the correspondence between the predicted

value and the real routing usage for the probabilistic method. We also

need to set appropriate edge capacity values for the global router-

based methods to generate good results.

VIII. CONCLUSION

Several previous works on routability-driven analytical placer

[15]–[17] have been proposed for the Xilinx UltraScale FPGAs.

However, they can only place design with single clock which is

not practical nowadays. This work is based on the framework of a

flat analytical placer for heterogeneous FPGAs [15]. In this paper,

to meet the new requirements in UltraScale FPGA placement, we

have proposed several techniques, i.e., a two-step clock constraint

legalization, chain move, and machine learning-based congestion

estimation. The experimental results show that our algorithm can

achieve better quality and running time compared to the ISPD 2017

contest winners. Moreover, our machine learning-based congestion

model can approximate the routing estimation of Vivado well

and guide the placement to generate good results in ISPD 2016

benchmarks. Future work will include how to better spread different

types of cells in the global placement phrase and to use actual routing

congestion as golden results in machine learning, etc.

REFERENCES

[1] A. Ling and J. Anderson, “The role of FPGAs in deep learning,” in
ACM Symposium on FPGAs, 2017, pp. 3–3.

[2] G. A. Constantinides, “FPGAs in the cloud,” in ACM Symposium on
FPGAs, 2017, pp. 167–167.

[3] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed et al., “VTR 7.0: Next generation
architecture and CAD system for FPGAs,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 7, no. 2, p. 6,
2014.

[4] P. Maidee, C. Ababei, and K. Bazargan, “Timing-driven partitioning-
based placement for island style FPGAs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 24, no. 3, pp. 395–406, 2005.

[5] M. Gort and J. H. Anderson, “Analytical placement for heterogeneous
FPGAs,” in IEEE International Conference on Field Programmable
Logic and Applications (FPL), 2012, pp. 143–150.

[6] M.-C. Kim, D.-J. Lee, and I. L. Markov, “SimPL: An effective
placement algorithm,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), vol. 31, no. 1, pp. 50–60,
2012.

[7] T.-H. Lin, P. Banerjee, and Y.-W. Chang, “An efficient and effective
analytical placer for FPGAs,” in ACM/IEEE Design Automation Con-
ference (DAC), 2013, pp. 10:1–10:6.

[8] Y.-C. Chen, S.-Y. Chen, and Y.-W. Chang, “Efficient and effective pack-
ing and analytical placement for large-scale heterogeneous FPGAs,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2014, pp. 647–654.

[9] D. Xie, J. Xu, and J. Lai, “A new FPGA placement algorithm for
heterogeneous resources,” in IEEE International Conference on ASIC
(ASICON), 2009, pp. 742–746.

[10] M. Xu, G. Gréwal, and S. Areibi, “StarPlace: A new analytic method
for FPGA placement,” Integration, the VLSI Journal, vol. 44, no. 3, pp.
192–204, 2011.

[11] Y. Xu and M. A. S. Khalid, “QPF: efficient quadratic placement for
FPGAs,” in IEEE International Conference on Field Programmable
Logic and Applications (FPL), 2005, pp. 555–558.

[12] D. T. Chen, K. Vorwerk, and A. Kennings, “Improving timing-driven
FPGA packing with physical information,” in IEEE International Con-
ference on Field Programmable Logic and Applications (FPL), 2007,
pp. 117–123.

[13] M. Tom, D. Leong, and G. Lemieux, “Un/DoPack: re-clustering of
large system-on-chip designs with interconnect variation for low-cost
FPGAs,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2006, pp. 680–687.

[14] W. Feng, J. Greene, K. Vorwerk, V. Pevzner, and A. Kundu, “Rent’s rule
based FPGA packing for routability optimization,” in ACM Symposium
on FPGAs, 2014, pp. 31–34.

[15] C.-W. Pui, G. Chen, W.-K. Chow, K.-C. Lam, J. Kuang, P. Tu,
H. Zhang, E. F. Y. Young, and B. Yu, “RippleFPGA: A routability-
driven placement for large-scale heterogeneous FPGAs,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2016,
pp. 67:1–67:8.

[16] W. Li, S. Dhar, and D. Z. Pan, “UTPlaceF: A routability-driven FPGA
placer with physical and congestion aware packing,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2016,
pp. 66:1–66:7.

[17] R. Pattison, Z. Abuowaimer, S. Areibi, G. Gréwal, and A. Vannelli,
“GPlace: A congestion-aware placement tool for ultrascale FPGAs,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2016, pp. 68:1–68:7.

[18] Y. Zhuo, H. Li, and S. P. Mohanty, “A congestion driven placement
algorithm for fpga synthesis,” in IEEE International Conference on
Field Programmable Logic and Applications (FPL), 2006, pp. 1–4.

[19] W.-T. J. Chan, P.-H. Ho, A. B. Kahng, and P. Saxena, “Routability
optimization for industrial designs at sub-14nm process nodes using
machine learning,” in ACM International Symposium on Physical
Design (ISPD), 2017, pp. 15–21.

[20] Z. Qi, Y. Cai, and Q. Zhou, “Accurate prediction of detailed routing
congestion using supervised data learning,” in IEEE International
Conference on Computer Design (ICCD), 2014, pp. 97–103.

[21] W. T. J. Chan, Y. Du, A. B. Kahng, S. Nath, and K. Samadi, “Beol
stack-aware routability prediction from placement using data mining
techniques,” in IEEE International Conference on Computer Design
(ICCD), 2016, pp. 41–48.

[22] S. Yang, C. Mulpuri, S. Reddy, M. Kalase, S. Dasasathyan, M. E.
Dehkordi, M. Tom, and R. Aggarwal, “Clock-aware FPGA placement
contest,” in ACM International Symposium on Physical Design (ISPD),
2017, pp. 159–164.

[23] S. Yang, A. Gayasen, C. Mulpuri, S. Reddy, and R. Aggarwal,
“Routability-driven FPGA placement contest,” in ACM International
Symposium on Physical Design (ISPD), 2016, pp. 139–143.

[24] Y. Lin, B. Yu, X. Xu, J.-R. Gao, N. Viswanathan, W.-H. Liu, Z. Li,
C. J. Alpert, and D. Z. Pan, “MrDP: Multiple-row detailed placement
of heterogeneous-sized cells for advanced nodes,” in IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), 2016, pp.
7:1–7:8.

[25] T. Lin, C. Chu, J. R. Shinnerl, I. Bustany, and I. Nedelchev, “POLAR: A
high performance mixed-size wirelengh-driven placer with density con-
straints,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 34, no. 3, pp. 447–459, 2015.

[26] S. Goto, “An efficient algorithm for the two-dimensional placement
problem in electrical circuit layout,” IEEE Transactions on Circuits
and Systems I, vol. 28, no. 1, pp. 12–18, 1981.

[27] “Xilinx UltraScale Architecture,” https://www.xilinx.com/products/
technology/ultrascale.html.

936

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

