
A Two-Step Search Engine For Large Scale Boolean Matching

Under NP3 Equivalence
Chak-Wa Pui , Peishan Tu , Haocheng Li , Gengjie Chen , and Evangeline F. Y. Young

Department of Computer Science and Engineering,

The Chinese University of Hong Kong, NT, Hong Kong
{cwpui,pstu,hcli,gjchen,fyyoung}@cse.cuhk.edu.hk

Abstract—Boolean matching is one of the most widely used engines in
industrial applications. However, existing Boolean matching researches
mainly focus on NPNP-equivalence. In this paper, we study a more
practical problem of Boolean matching, which is Non-exact Projective
NPNP (NP3). A two-step search engine is used to solve the problem and
several heuristics and constraints are proposed to accelerate the whole
process. In particular, we explore a new kind of symmetry properties
in NP3 equivalence checking which helps to prune the solution space
efficiently. Experimental results show that our proposed approach can
achieve the best results among the winning teams of the ICCAD 2016
contest in quality within a given time limit.

I. INTRODUCTION

Boolean matching is the problem of determining whether two

Boolean functions are functionally equivalent under some con-

straints. In general, Boolean matching refers to the Boolean matching

problem under NPNP-equivalence (Negation and Permutation of

outputs and Negation and Permutation of inputs). However, due to

the actual demands from industry, variants of the problem have been

introduced and explored, such as PP-equivalence, NPN-equivalence,

etc. The matching problem that we discuss in this paper is NP3-

equivalence (Non-exact Projective NPNP) checking, which is an

even more general formulation of the Boolean matching problem.

The matching problem is formulated as an optimization problem

instead of a decision problem and the objective is to obtain the

maximum number of equivalent outputs instead of matching all

of them. The formal definition of this problem will be given in

Section II-A. This problem has much larger solution space compared

to NPNP-equivalence checking, which is already proved to be

between coNP and
∑p

2 in the polynomial hierarchy [5], [7].

Boolean matching finds numerous applications in verification and

logic synthesis. In library binding [6], Boolean matching is used to

recognize whether a cell can implement a portion of the network. In

engineering change order (ECO), large isomorphic sub-circuits exist

in the original and slightly modified circuits [15]. Boolean matching

can be used to find the minimal set of changes in logic such that large

isomorphic sub-circuits can be reutilized to save designers’ time

and money [11]. In hardware Trojan detection, Boolean matching

is used to identify candidate cones in the stored library [19].

Boolean matching is also widely used in logic verification [17] and

technology mapping [8].

A. Previous Work

Prior works in Boolean matching can be classified into three

major categories: signature based, canonical form based and SAT

based. The goal of signature based matching [1], [6] is to prune the

Boolean matching space by filtering impossible I/O correspondences.

Although it is effective, most of them are incomplete due to their

intrinsic limitations [16]. Canonical form based methods try to

compare the canonical representations of two Boolean functions

to find valid I/O matches [2]–[4], [9]. However, the scalability of

this kind of methods becomes the bottleneck when solving large

scale Boolean matching. Recently, several SAT-based approaches are

proposed, which yields good scalability and high efficiency. In [10],

a hybrid method based on SAT and signature is proposed. In [13],

[14], an SAT-based Boolean matching procedure with learning is

introduced. A recent work [20] on NP3 equivalence checking claims

that they can obtain results of output pairs whose support sizes are

small by using support set theory and symmetric detection.

However, very few of these prior works can check NPNP-

equivalence or even PP-equivalence. Since the NP3 equivalence

problem is formulated as an optimization problem instead of a

decision problem and the solution space is much larger than that

of NPNP-equivalence, a scalable Boolean matching algorithm is

needed.

B. Applications

Since NP3 is a more general formulation, it can also be used to

solve other Boolean matching problems like NPNP, NPN. Moreover,

NP3 can find applications in ECO, hardware security, etc. For exam-

ple, in ECO, given a sub-circuit in a netlist, we need to implement a

new sub-circuit with fewer or more inputs or outputs. Traditionally,

the sub-circuit will be modified incrementally to meet the new

requirement. By using NP3 checker, we can determine directly if two

sub-circuits are equivalent by multiple binding of inputs and binding

inputs to constants. In hardware security, identifying a circuit as a

Trojan is very time consuming. By finding the maximum numbers of

matched inputs and outputs of the two circuits with an NP3 checker,

the candidate circuits can be filtered such that only those that are

likely to be Trojans will be testified. Moreover, for some multi-usage

IP cores, the number of inputs might be more than the required

number of inputs, which gives the opportunity to hardware Trojan

attacks. If certain signals are given to these “redundant” inputs, the

IP core might become a Trojan. By using NP3 checker, we can

check if a multi-usage IP core is equivalent to a known Trojan of

the current application, since NP3 matching allows multiple binding

of inputs and binding inputs to constants.

C. Our Contributions

In this paper, we propose a search engine for large scale Boolean

matching under NP3 equivalence. The major contributions are sum-

marized as follows:

• A two-step search engine to solve large scale Boolean matching

under NP3 equivalence is proposed. This two-step approach

enables us to solve the optimization problem more efficiently

and effectively. To the best of our knowledge, this is the

first work that gives a systematic method to solve large scale

Boolean matching under NP3 equivalence.

978-1-5090-0602-1/18/$31.00 ©2018 IEEE

6D-2

592

• Several heuristics are used to accelerate the searching process,

which include modifying the matching order of output pairs,

output grouping, and output group signature. The first two help

the output solver to find a valid output matching faster and

avoid bad matching results in the searching process. The output

group signature heuristics relaxes the constraint under NPNP to

handle projection and constant binding.

• New constraints are proposed to solve the Boolean matching

problem under NP3 equivalence, which include support group

size dependency constraints and symmetry related constraints.

The support group size dependency constraints explore the

relationship between the functional support sizes of the two

given circuits. The symmetry related constraints explore new

kinds of symmetry properties in NP3 equivalence which are

different from those explored in previous works on NPNP

equivalence, PP equivalence, etc.

The remainder of this paper is organized as follows. Section II

gives the preliminaries of the problem. Section III–V first gives

an overview of our algorithm and then introduces its details. Sec-

tion VI shows the experimental results, and we finally conclude in

Section VII.

II. PRELIMINARIES

In this paper, a set of Boolean variables is denoted as an upper-

case letter, e.g. X; its elements are in lower-case letters, e.g., xi ∈
X; an instance of X is denoted as �x; an instance of X where xi
(xj) is set to p (q) is denoted as �x|xi=p,xj=q . The cardinality of

a set X is denoted as |X|. Given a function f(X), its outputs are

denoted as < f1, f2, . . . , f|f | >, where |f | is the number of outputs

of f . An instance of f(X) is denoted as �f(�x).
Given two circuits ckt0 and ckt1, they represent two functions

f(X) and g(Y) respectively. |X| denotes the number of primary

inputs of ckt0 and |f | represents the number of primary outputs of

ckt0. Similarly in ckt1, |Y | and |g| represent the number of primary

inputs and outputs respectively. For simplicity, we assume |X| =
mI , |f | = mO , |Y | = nI , |g| = nO in the remaining parts of the

paper.

A. Boolean Matching

A permutation ψ from X to Y is a bijection function ψ : X → Y .

A phase assignment φ over X is a component-wise mapping with

φ(xi) = xi or ¬xi.
Given two target functions f(X) and g(Y) where mI =

nI ,mO = nO , Boolean matching under NPNP equivalence is to

check the equivalence of these two functions under input/output

permutation and phase assignment. In other words, we need to check

if there exists a set of ψI , ψO , φI , φO such that φO ◦ψO(�f(�x)) =
�g(φI ◦ ψI(�x)) for any �x.

In the following, we are going to define NP3 equivalence. For two

target functions f(X) and g(Y), we can construct two 0-1 matrices

MI and MO as below.

MI =

x1 ¬x1 · · · xmI ¬xmI 0 1⎡
⎢⎢⎣

⎤
⎥⎥⎦

y1 a1,1 b1,1 · · · a1,mI b1,mI a1,mI+1 b1,mI+1

y2 a2,1 b2,1 · · · a2,mI b2,mI a2,mI+1 b2,mI+1

...
...

...
. . .

...
...

...
...

ynI anI ,1 bnI ,1 · · · anI ,mI bnI ,mI anI ,mI+1 bnI ,mI+1

,

MO =

f1 ¬f1 · · · fmO ¬fmO⎡
⎢⎢⎣

⎤
⎥⎥⎦

g1 c1,1 d1,1 · · · c1,mO d1,mO

g2 c2,1 d2,1 · · · c2,mO d2,mO

...
...

...
. . .

...
...

gnO cnO,1 dnO,1 · · · cnO,mO dnO,mO

.

MI shows how the inputs of f are mapped to the inputs of g, where

ai,j = 1 (bi,j = 1) denotes that the positive (negative) of xj is

mapped to yi. Noted that, ai,mI+1 = 1 (bi,mI+1 = 1) denotes yi is

mapped to constant 0 (1). In MO , ci,j = 1 (di,j = 1) denotes that

the positive (negative) of fj is mapped to gi. In non-exact projective

NPNP (NP3) Boolean matching, f(X) and g(Y) are equivalent if

there exists an assignment of MI ,MO such that the constraints in

Equation (1)–(5) are satisfied.

nO∑
i=1

mO∑
j=1

(ci,j + di,j) > 0, (1)

mO∑
j=1

(ci,j + di,j) ≤ 1, ∀i = 1, · · · , nO, (2)

mI+1∑
j=1

(ai,j + bi,j) = 1, ∀i = 1, · · · , nI , (3)

(
∧

cj,i=1

fi ≡ gj) ∧ (
∧

dj,i=1

fi ≡ ¬gj), (4)

(
∧

aj,i=1

xi ≡ yj) ∧ (
∧

bj,i=1

xi ≡ ¬yj). (5)

By Equation (1), at least a pair of outputs should be matched.

Equation (2) ensures an output of g can be mapped to at most one

output of f while Equation (3) ensures every input of g should be

mapped to either an input of f or a constant. The last two constraints

make sure the inputs and outputs of f and g are bound as MO and

MI indicate.

The key differences between NP3 and other Boolean equivalence

problem are summarized as follows:

• Some outputs and inputs of function f can be unmatched.

• Inputs of g can be bound to constant.

• Multiple inputs (outputs) of g can be bound to the same input

(output) of f .

B. Problem Definition

Given two circuits ckt0 and ckt1 whose target functions are f(X)
and g(Y), if they are under NP3 equivalence, we can find an

assignment of MI ,MO satisfying Equation (1)–(5). To determine

how good a given Boolean matching under NP3 equivalence is,

Equation (6) is used to evaluate the result and higher score indicates

better matching result. This evaluation method aims at maximizing

the number of mapped outputs of both ckt0 and ckt1.

score =

mo∑
i=0

q(fi), (6)

where fi denote the ith primary output of ckt0 and q(fi) is

calculated as Equation (7).

q(fi) =

{
K +

∑nO
j=1(cj,i + dj,i), if

∑nO
j=1(cj,i + dj,i) ≥ 1,

0, otherwise.
(7)

If K is a big number, the number of mapped outputs of ckt0 will be

preferred over the total number of mapped outputs of both circuits.

To be specific, if K is large, matched results like {(fi, gj), (fp, gq)}
will have higher scores than those like {(fi, gj , gp, gq)} even though

they have the same number in total matched outputs.

To determine whether a matching result is optimal, we compare it

with the one maximizing the number of output matching groups and

assuming that all of the remaining unmatched outputs of ckt1 are

matched to the same output of ckt0. For example, given two circuits

ckt0 and ckt1 whose numbers of outputs are 12 and 15 respectively,

a result is considered optimal if its score is ((K + 2)× 12 + 3).

6D-2

593

Algorithm 1 SAT-based Backtracking

Require: Two functions f and g
1: let R be the output matching results;

2: while !optimal and !timeout do
3: if new pair can be found by output SAT then
4: add a new output matching pair to R;

5: else
6: if projection is disabled then
7: enable projection;

8: else
9: forbid the current matching result R;

10: remove the last added pair from R;

11: disable projection;

12: end if
13: continue;

14: end if
15: solve R by input solver;

16: if R can not be satisfied then
17: forbid the current matching result R;

18: remove the last added pair from R;

19: end if
20: end while
21: return R;

III. OVERVIEW

Our Boolean matching engine is a two-step search engine based

on backtracking and SAT. The output solver is a combination of

SAT and a backtracking search while the input solver is based on

the framework of [14]. Given two functions, we first construct two

And-Invert Graphs (AIGs) [12]. The output solver will then generate

some output matching pairs. After simplifying the AIGs, the input

solver will try to get an input matching by another search such that

the output matching is satisfied under NP3 equivalence. The result

from the input solver will give feedback to the output solver, such

that the output solver can better optimize the matching result. The

details of our output solver and input solver will be discussed in

Section IV and Section V respectively. In the following sections, if

a method is stated as a “heuristic”, sub-optimality may be resulted.

Otherwise, the method described will not lead to loss in optimality.

IV. OUTPUT SOLVER

In this section, we will first introduce the basic framework of our

output solver in Section IV-A. In Section IV-B, three constraints

considering the output matching from a functional perspective are

discussed. Two heuristics are then proposed in Section IV-C and

IV-D to improve the efficiency in output matching.

A. SAT-based Backtracking

As shown in Algorithm 1, our output solver uses SAT-based

backtracking search and it optimizes the matching result iteratively

by using the feedback from the input solver. When an output

matching is proved to be feasible under NP3 equivalence by the

input solver, it will keep those output matching pairs in the next

iteration. If it is proved to be not feasible, the output solver will

avoid selecting this output matching again in later iterations. When

the output SAT solver returns no solution, meaning that no more

output matching result can be found if the previous output matching

pairs are kept, backtracking will then be performed.

In Boolean matching under NP3 equivalence, multiple gj can be

mapped to fi, and this feature is called projection. If g1 and g2 are

projected to f1, we have two output matching pairs, i.e. f1 to g1

and f1 to g2. Since each gj can only be mapped to one fi, allowing

projection at the beginning will lower the flexibility of later iterations

in output matching, resulting in poor performance. To avoid this,

projection is not allowed until backtracking is performed. As shown

in Equation (8), the variable allowProj is used to decide whether

projection is allowed in the output solver.

nO∧
i=1

nO∧
j=i+1

mO∧
k=1

(allowProj ∨ ¬ci,k ∨ ¬cj,k) ∧ (allowProj ∨ ¬ci,k ∨ ¬dj,k)

∧ (allowProj ∨ ¬di,k ∨ ¬cj,k) ∧ (allowProj ∨ ¬di,k ∨ ¬dj,k)
.

(8)

When allowProj is set to 1, Equation (8) is always true. Otherwise,

at least one of (ci,k ∨ di,k) and (cj,k ∨ dj,k) must be zero and no

projection is thus allowed in output matching.

B. Output Functional Constraints

Definition 1. Given a function f(X), xi and fi are functional
support of each other if there exists a �x such that flipping the value
of xi in �x changes the value of fi. FuncSupp(fi) (FuncSupp(xi))
denotes the set of functional support of fi (xi).

Definition 2. Given a function f(X), xi and fi are structural
support of each other if there is a path between xi and fi in the
corresponding AIG. StrucSupp(fi) (StrucSupp(xi)) denotes the set
of structural support of fi (xi).

Definition 3. Given a function f(X), the fanouts (fanins) of xi
(fi) are the set of gates connected to xi (fi) in the corresponding
AIG.

Given two output fi and gj , if |FuncSupp(fi)| is bigger than

|FuncSupp(gj)|, these two outputs cannot form a valid pair under

NP3 equivalence for any input matching. These can be further ex-

tended to multiple output matching pairs. Given an output matching,

any valid input matching result under NP3 equivalence must satisfy,

|
⋃

fi∈fM
FuncSupp(fi)| ≤ |

⋃
gj∈gM

FuncSupp(gj)|, (9)

where fM , gM denote groups of matched outputs. As experimental

results show, most of the time in the searching process is spent by the

input solver. It is worthwhile to check whether the output matching

to be tried violates this constraint.

Definition 4. For an output fi ∈ f , Equal(fi) denotes all the fj ∈ f
that have the same value of fi for any input �x.

Given the AIG of a function f , we can easily check whether fi and

fj share the same fanin signals, which implies fi = fj or fi = ¬fj
for any �x. There are five cases for any two output matching pairs

(fp, gq) and (fi, gj) as shown below,

• gq ∈ Equal(gj) ∧ fp ∈ Equal(fi),
• gq ∈ Equal(gj) ∧ ¬fp ∈ Equal(fi),
• ¬gq ∈ Equal(gj) ∧ ¬fp ∈ Equal(fi),
• ¬gq ∈ Equal(gj) ∧ fp ∈ Equal(fi),
• otherwise.

If the matching result belongs to one of the first four situations,

some constraints must be satisfied as discussed in the followings.

For simplicity, we only discuss one of the situations, the other three

are similar. If gq ∈ Equal(gj) and fp ∈ Equal(fi), the constraint in

Equation (10) should not be violated.

(¬cj,i∨cq,p)∧ (cj,i∨¬cq,p)∧ (¬dj,i∨dq,p)∧ (dj,i∨¬dq,p), (10)

where (¬cj,i ∨ cq,p)∧ (cj,i ∨¬cq,p) means that if gj is matched to

fi, gq should also be matched to fp, and vice versa. Similar meaning

can be applied to (¬dj,i ∨ dq,p) ∧ (dj,i ∨ ¬dq,p).

6D-2

594

Algorithm 2 Generate output groups of f, g

Require: Two functions f and g, |f | = |g|
1: n← |f |;
2: fs, gs ← sorted outputs of f, g as in Section IV-C;

3: add a new group to Gf and Gg respectively;

4: for i = n : 1 do
5: add fs

i to the last group in Gf ;

6: add gsi to the last group in Gg;

7: if |FuncSupp(fs
i)| > |FuncSupp(gsi−1)| then

8: add a new group to Gf and Gg respectively;

9: end if
10: end for
11: return Gf , Gg;

C. Output Matching Order Heuristics

Given two functions f and g, fi is more likely to be mapped to gj
if they are similar to each other both functionally and structurally.

Moreover, we prefer to match those outputs that have smaller number

of functional supports first since they can give more feedback to later

iterations and yield better performance in terms of running time. To

improve the efficiency of our algorithm, we use a heuristics to adjust

the output matching order. f and g are first sorted by their functional

support sizes, structural support sizes and fanin sizes in ascending

order, where functional support size is used as the first order while

structural support size and fanin size serve as the second and third.

The variables in MO are then created in this order.

D. Output Grouping Heuristics

Consider two functions f and g, where |f | = |g| = 4, and the

numbers of functional supports of f1, f2, f3, f4 are 1, 2, 3, 5, and the

numbers of functional supports of g1, g2, g3, g4 are 2, 2, 4, 6. Due

to the constraint in Equation (9), g1 and g2 can only be matched

to f1 or f2, g3 can only be matched to f1, f2 or f3, g4 can be

matched to any one of f1, f2, f3 and f4. Therefore, if f1 is matched

to g4 at the beginning, either f3 or f4 cannot be matched to any

gi. To avoid this situation, a heuristics is used. As mentioned in

Section IV-B, an output fi ∈ f can be matched if there exists

an output gj ∈ g such that |FuncSupp(fi)| ≤ |FuncSupp(gj)|.
After removing all the outputs that cannot be matched, for the

functions having the same number of outputs, we first construct

two set Gf , Gg of output groups as shown Algorithm 2. The output

groups of the previous example will be {g1, g2}, {g3}, {g4} and

{f1, f2}, {f3}, {f4}. Then, we can get the group number of each

output, e.g. the group numbers for f1, f2, f3, f4 (g1, g2, g3, g4) are

1, 1, 2, 3 (1, 1, 2, 3) in the previous example. It is easy to see that

matching a pair of outputs with different group numbers will result

in at least a pair of outputs not being matched. In order to maximize

the number of output matching pairs, we will not match outputs of

different group numbers in this heuristics if the numbers of outputs

that can be matched in f and g are the same.

V. INPUT SOLVER

In this section, we will first introduce the basic framework of our

input solver in Section V-A. In Section V-B, some useful constraints

considering the input matching from a functional perspective are

proposed. A heuristics shown in Section V-C is then used to improve

the input matching efficiency. Finally, we explore the symmetry

properties in NP3 equivalence and propose some efficient constraints

in Section V-D to prune the solution space effectively.

Algorithm 3 Get the redundant set Rfi of �x on fi

Require: a function fi and an input instance �x;

1: Rfi ← ∅;
2: for p = 1, . . . ,mI do
3: add xp to Rfi ;

4: ∀xq ∈ Rfi , xq is bound to �xq;

5: if ∃xq ∈ Rfi is not redundant then
6: remove xp from Rfi ;

7: end if
8: unbind all the inputs of fi
9: end for

10: return Rfi ;

A. Incremental SAT-based Solver

Our input solver is based on the framework mentioned in [13],

[14]. It is an incremental SAT-based solver with strengthened learn-

ing. MiniSat [18] is used to get a solution of MI and MO under the

constraints of NP3 equivalence and those new constraints we propose

(in Section V-B–V-D). The mapping solution is then examined by

solving the miter shown in Equation (11).

ψ = σ∧
∨

cj,i+dj,i=1

((fi(X) ≡ fi)∧(gj(Y) ≡ gj)∧(φO(fi) ≡ gj)),

(11)

where fi(X) (gj(Y)) denotes the function determining the value of

fi (gj) and

σ = (
∧

aj,i=1

(xi ≡ yj)) ∧ (
∧

bj,i=1

(xi ≡ ¬yj))

∧ (
∧

aj,mI+1=1

(yj ≡ 0)) ∧ (
∧

bj,mI+1=1

(yj ≡ 1)).

If the solver returns a solution, this solution is a counter example

to the matching result. Otherwise, a valid input matching under

NP3 equivalence is found. These steps are repeated until a mapping

solution satisfying the NP3 equivalence constraints is found or the

number of trials exceeds a limit, which is proportional to the number

of gates in the AIG in our implementation.

Theorem 1. Given fp and gq for Boolean matching under NP3
equivalence, if fp(�x) = gq(�y), then any assignment of MI is
infeasible if it maps �x to �y .

(The proof of Theorem 1 is skipped due to lack of space.)

With Theorem 1, by excluding some infeasible assignments of

MI , a counter example can be used to further prune the solution

space when solving the SAT to get the next MI . To achieve that,

Equation (12) is added to the input solver SAT, where �x and �y are

a counter example of an output matching pairs (fp, gq).

(

nI∨
i=1

mI∨
j=1

li,j) ∧ (

nI∨
i=1

ci), (12)

where

li,j =

{
bi,j , if �xj = �yi,

ai,j , if �xj = �yi,
, ci =

{
ai,mI+1, if �yi = 1,

bi,mI+1, if �yi = 0.

Definition 5. For a counter example �x on (fp, gq), the redundant
set Rfp is a set of inputs of fp that will not change the value of fp
if the other inputs not in the set are bound to �x.

In fact, more counter examples can be derived from the current

counter examples without running the input solver. For example,

given a counter example of �x = 1101, if Rfp = {x1, x2}, we

6D-2

595

can get three more counter examples 1001, 0101, and 0001. In

our solver, based on Equation (12), the solution space of MI will

be further pruned by this fact. Given a counter example �x and �y
such that fp(�x) = gq(�y), we first use a greedy method shown in

Algorithm 3 to get its redundant set. Since changing the values of

the xi ∈ Rfp will not change the value of fp, Equation (12) can be

modified to Equation (13), which has less literals.

(
∨

yi /∈Rgq

∨
xj /∈Rfp

li,j) ∧ (
∨

yi /∈Rgq

ci). (13)

It is obvious that the less literals in Equation (13) the more infeasible

solutions will be pruned. For a counter example �x and �y on multiple

outputs, we will select the Rfp whose size is the largest on its

corresponding output. Given a matched output pair (fp, gq), if

|FuncSupp(fp)| = |FuncSupp(gq)|, no input yj ∈ FuncSupp(gq)
can be bound to a constant. Hence, ci will not be added if the

corresponding yi cannot be bound to a constant.

Moreover, since the clauses added by Equation (13) can be

reused when solving subsequent output matching results, we will

add these clauses to the input SAT solver if their corresponding

output matching pairs are a subset of the current output matching.

By reusing these clauses in the input solver, we can avoid redundant

search.

B. Input Functional Constraints

After getting the output matching result, we can simplify the AIGs

of f(X) and g(Y) by removing those gates that are not connected

to any fi or gj in the matching pairs. Before introducing the input

functional constraints, we first need to define floating variable as

Definition 6.

Definition 6. Floating variables are denoted as fF , gF , XF , YF

and should satisfy the following constraints.
• fF = {fj |∑nO

i=1 ci,j + di,j = 0},
• gF = {gi|∑mO

j=1 ci,j + di,j = 0},
• XF = {xi|xi /∈ ⋃

fi /∈fF FuncSupp(fj)},
• YF = {yi|yi /∈ ⋃

gj /∈gF FuncSupp(gj)}.
These variables are irrelevant to the current input matching prob-

lem since they are either unmapped outputs or inputs not supporting

any mapped outputs. To accelerate the input matching process, we

map the floating variables yi ∈ YF to constant 0 while xp ∈ XF

cannot be mapped to any yj ∈ Y . For any xi ∈ X that is

functionally supported by some non-floating variables, it can only

be mapped to a yj that satisfies Equation (14).

yj ∈
⋃

fp∈FuncSupp(xi)

⋃
cq,p+dq,p=1

FuncSupp(gq). (14)

C. Output Group Signature Heuristics

As mentioned in Section IV-D, the heuristics will forbid the

outputs in different groups to be matched if the numbers of outputs

that can be matched in f and g are the same. Given two inputs xi
and yj , Wxi (Wyj) denotes the set of groups that xi (yj) supports. It

is easy to deduce from Equation (14) that any valid input matching

xi and yj must satisfy Equation (15), which can be used to prune

the solution space of MI .

Wxi =Wyj . (15)

However, since projection and constant binding are allowed under

NP3 equivalence, the output groups that yj supports may change

under different input matching, which cannot be detected until an

input matching is selected. For example, y0 may support three

outputs g1, g2 and g3 which belong to group 1, 2, and 2 respectively.

Assume that y2 is also a functional support of g1 and is now bind to

a constant, which may make y0 redundant to g1, thus y0 no longer

supports group 1.

There are three situations: (1) Wxi = Wyj , (2) Wxi ⊂ Wyj ,

(3) Wxi ⊂ Wyj . It’s obvious that xi and yj will not be matched

in situation (3) under any valid input matching results. If Wxi is a

proper subset of Wyj , it is still possible for xi to be matched to

yj since yj may not support some of the groups under some input

matching. A heuristics is proposed to handle situation (2), which

aims at identifying those input matching pairs (xi, yj) that are very

likely to violate Equation (15) under NP3. Let w be the group that

xi does not support but yj supports (w ∈Wyj and w /∈Wxi). The

heuristics only allows two inputs to be matched if the following two

conditions are satisfied.

• The number of outputs of g in w is less than a constant, which

is set to be 3 in our implementation. This constraint helps to

find the output groups that yj might not support under some

input matching because the number of outputs that yj supports

in those groups are relatively small.

• Since only projection and constant binding can remove an input

from the functional supports of an output, for any gq ∈ w, there

must be projection or constant binding in any output matching

(fp, gq); otherwise yj will always support w. Hence, if fp and

gq are matched, |FuncSupp(fp)| < |FuncSupp(gq)|.

D. Symmetry Related Constraints

In this section, we study some symmetry related constraints and

define negative and positive symmetry as follows:

Definition 7. A pair of input (xi,xj) is positive symmetric on fp
if fp(�x|xi=0,xj=1) = fp(�x|xi=1,xj=0) for any �x. It is negative
symmetric on fn if fn(�x|xi=0,xj=0) = fn(�x|xi=1,xj=1) for any
�x. A pair of input (xi,xj) is symmetric if it is positive or negative
symmetric.

In Boolean matching under NP3 equivalence, there are two kinds

of symmetric properties: (1) symmetry under NP, (2) symmetry

under NP3. In NP3 equivalence checking, yi can be mapped to a

constant and multiple yj can be mapped to a xi. The symmetric

property under this kind of matching is called “symmetry under

NP3”. If the functional support sizes of the outputs in an output

matching pair (fi, gj) are the same, no input of fi is matched

to multiple inputs of gj and the inputs of gj are not bound to

any constants, finding input matching of this pair of output can be

reduced to NP Boolean matching. We call the symmetric property

under this kind of matching “symmetry under NP”. Only positive

symmetry is considered in the following discussion, the conditions

that include negative symmetry can be deduced accordingly. The

proof of Theorem 2 and 3 will be omitted due to page limit.
1) Symmetry under NP3: For symmetry under NP3, since multi-

ple yj can be mapped to one xi and yi can be mapped to a constant,

some of the inputs may become redundant to some non-floating

outputs, which will change some symmetric properties of the inputs.

For example, given g1 = (y1
⊕
y2) ∧ y3, if we bind y1 and y2 to

the same constant, y3 will become redundant to g1. However, this

cannot be detected before an input matching is obtained.

Theorem 2. Given a function ϕ (|ϕ| = 1), a positive symmetric
group is an input group whose elements are all positive symmetric
to each other. If one of the elements inside the group becomes re-
dundant, then all the other elements in the group become redundant.

For example, given a pair of positive symmetric inputs (y1, y2)
of g1, g1(�y|y1=1,y2=0) = g1(�y|y1=0,y2=1). If y1 is redun-

6D-2

596

dant, we can show that g1(�y|y1=1,y2=0) = g1(�y|y1=0,y2=0) and

g1(�y|y1=0,y2=1) = g1(�y|y1=1,y2=1). Hence, y2 must also be redun-

dant.

Definition 8. Given a positive symmetric group w of gj and a pair
of output matching (fi, gj), if

|FuncSupp(gj)| − |w| < |FuncSupp(fi)|,
w is a hard symmetric group of gj under the output matching pair
(fi, gj).

Theorem 3. Given a hard symmetric group w of gj under the output
matching pair (fi, gj), for any yp, yq ∈ w, they are symmetric to
each other unless one of them is bound to a constant or an input of
gj .

For example, assume g1 is matched to f1 and w = (y1, y2)
is a hard symmetric group of g1 such that |FuncSupp(g1)| −
|FuncSupp(f1)| = 1. If neither y1 nor y2 is bound to a constant

or an input of gj , it is easy to see that the symmetric property

between (y1, y2) can only be removed when either of them becomes

redundant. By Theorem 2, if y1 is redundant, y2 must also be

redundant, and vice versa. This will make the number of functional

supports of g1 smaller than that of f1. By Equation (9), f1 and

g1 cannot be matched. Hence, as long as g1 is mapped to f1, the

symmetric property between (y1, y2) can only be removed if either

of them is bound to a constant or an input of gj .

Given an output matching pair (fi, gj), we have a set W of hard

symmetric groups of gj and a set H of symmetric groups of fi. Now,

we are going to make use of this symmetry property to form input

matching. With Theorem 3, we can have the following constraints.

• For any yp ∈ wm where wm ∈ W , there exists a xq ∈ hn

where hn ∈ H that is mapped to yp unless one of the following

constraints are satisfied,

– yp is bound to a constant or an input of gj ,

– All the other variables in its group wm are bound to

constants or inputs of gj .

For example, given W = {{y1, y2, y3}, {y4, y5}} and H =
{{x1, x2, x3}}, y1 have to be matched to an xi ∈ {x1, x2, x3}
unless either of these two conditions is satisfied: (1) it is mapped

to an input of gj or a constant; (2) y2, y3 are mapped to inputs

of gj or constants. Similar rules can be applied to y2, y3, y4
and y5.

• For any yp ∈ wm where wm ∈ W , if one of the variables in

wm is matched to a variable in the symmetric group hn ∈ H ,

yp will also be mapped to one of the variables in hn otherwise

yp is bound to a constant or an input of gj . For example, given

W = {{y1, y2, y3}} and H = {{x1, x2, x3}, {x4, x5}}, if

there exists a yi ∈ {y1, y2, y3} mapped to x4 or x5, each yi ∈
{y1, y2, y3} should be mapped to either x4 or x5 otherwise it

is mapped to a constant or an input of gj .

2) Symmetry under NP: Unlike symmetry under NP3, the sym-

metric property under NP will remain the same under any input

matching since there is no projection nor constant binding in

input matching under NP equivalence. In the following, a general

constraint will first be introduced, then a constraint that can be

applied to some special cases will be given. First we define the

symmetry signature for each input xi of f as below:

Definition 9. Given a function f , the symmetry signature for each
input xi, denoted as SymmSigni, is a sequence of integers of which
the jth number is denoted as SymmSigni(j), and SymmSigni(2j)
(SymmSigni(2j+1)) equals the number of inputs that xi is positive
(negative) symmetric to on fj .

For any pair of matched outputs (fp, gq) whose functional support

sizes are the same, two inputs xi and yj can be matched if and only

if SymmSigni(2p) = SymmSignj(2q) and SymmSigni(2p + 1) =
SymmSignj(2q + 1).

For those input pairs that are positive symmetric on all the mapped

outputs, we can have tighter constraints. These inputs can be divided

into several positive symmetric groups such that inputs inside the

same group are positive symmetric to each other. We denote the

positive symmetric groups on f as W = {w1, w2, . . . , w|W |} and

those on g as H = {h1, h2, . . . , h|H|}. A group wp is said to be

mapped to hq if all the inputs in wp are mapped to those in hq . It is

obvious that |W | = |H| otherwise a pair of symmetric inputs will

be mapped to a pair of non-symmetric inputs. For any wp ∈ W ,

there must exist a hq ∈ H that wp is mapped to and the following

constraints must be satisfied,

• |wp| = |hq| otherwise a pair of symmetric inputs will be

mapped to a pair of non-symmetric inputs,

• Since arbitrary input matching between wp and hq are equiv-

alent, for all xi ∈ wp and yi ∈ hq , xi is mapped to yi where

i = 1, . . . , |wp|.
For example, given W = {{x1, x2, x3}, {x4, x5}, {x6, x7}} and

H = {{y1, y2, y3}, {y4, y5}, {y6, y7}}, xi ∈ {x1, x2, x3} can only

be mapped to yi ∈ {y1, y2, y3} and x4 can be mapped to either y4
or y6.

VI. EXPERIMENTAL RESULTS

To evaluate our proposed method, the algorithms are implemented

in C++. The experiments were performed on a 64-bit Linux work-

station with Intel Xeon 3.7GHz CPU and 16GB memory, using the

benchmarks provided by ICCAD 2016 Contest [21]. The running

time limit has been set to 1800 seconds in order to have a fair

comparison with the contest winners. Since we want to match as

many outputs of ckt0 as possible, K is set to 11, which is the same

as the configuration in the ICCAD 2016 contest. Note that the score

and running time of each test case in the following indicate the best

score the solver can achieve and the corresponding running time to

get that result.

For each benchmark, before entering our flow, we will first

perform a PP-equivalence checking using the method described in

[10] and for those output matching pairs that are independent on

others, we will perform a P-equivalence checking. If a valid solution

is found, we will not perform our NP3 equivalence checking. In fact,

we can only find PP-equivalence in case 13–15, and there are four

pairs of outputs that are under P-equivalence in case 3.

In TABLE I, we compare the quality and running time of

our Boolean matching algorithm with the winning teams in the

ICCAD 2016 contest, [20], and the known optimal results of some

test cases. Since the computer configuration used in [20] is different

(Intel Core i5 2.9GHz CPU) and the running time of the teams are

not announced, our running time is shown as a reference. For those

test cases we obtain results, our solutions are optimal except for case

20 and 26. Compared to the winning teams in ICCAD 2016 contest,

our framework outperforms them in all test cases. Compared to [20],

our quality is almost 5X better than theirs.

In Table II, we compare the running time and quality of our

framework before and after applying the symmetry constraint in

Section V-D. Since only some of the test cases in the benchmark

have symmetry property, we just show the comparisons for those test

cases. After applying the symmetry constraints, either better quality

or faster running time with the same quality can be achieved. Note

that the results of case 14–15 as reported in TABLE I are obtained

by PP-equivalence checking [10] but they can also be solved by our

6D-2

597

TABLE I: Boolean matching quality and running time comparison

with ICCAD 2016 contest winners.

Case#
Ours 1st Place 2nd Place 3rd Place [20]

Optimal
Score Time(s) Score Score Score Score Time(s)

0 25 1 25 25 25 25 1 �
1 192 18 192 192 192 48 17 �
2 192 13 192 192 192 36 5 �
3 180 57 180 136 180 132 9 �
4 192 3 192 192 192 36 10 �
5 - - - - - - - -
6 - - - - - - - -
7 - - - - - - - -
8 - - - - - - - -
9 - - - - - - - -

10 24 1 24 24 24 24 1 �
11 - - - - - - - -
12 60 29 60 60 60 - - �
13 120 718 120 - - - - �
14 84 1 84 84 84 - - �
15 120 1 120 120 120 60 2 �
16 96 22 96 96 96 96 6 �
17 120 3 120 120 120 - - �
18 - - - - - - - -
19 120 82 - 24 - - - �
20 108 479 24 48 - 12 20 -
21 - - - - - - - -
22 60 24 60 48 60 - - �
23 - - - - - - - -
24 - - - - - - - -
25 192 98 192 108 73 - - �
26 120 1 120 0 0 - - -

Total 2005 - 1801 1469 1418 469 - -

TABLE II: Comparison of running time and quality of our frame-

work before and after applying symmetry constraint.

Case#
With symm Without symm

Score Time(s) Score Time(s)

12 60 29 - -
14 84 324 36 1391
15 120 38 120 99
17 120 3 120 73
19 120 82 36 75
20 108 479 96 188
22 60 24 - -

NP3 equivalence checking. The running time is longer compared

with those of the method described in [10] (since only input and

output permutations are considered) but are still very reasonable and

affordable (as shown in TABLE II).

VII. CONCLUSION

Although Boolean matching is well studied in previous works, the

problem of Boolean matching under NP3 equivalence has not been

explored yet. It has been shown that search-based methods with cer-

tain pruning techniques work well in large scale Boolean matching.

In this paper, a two-step search engine is proposed for large scale

Boolean matching under NP3 Equivalence. It consist of two parts,

a SAT-based backtracking output solver and an incremental SAT-

based input solver. Several constraints and heuristics are used in both

solvers. Experimental results shows that our framework outperforms

all the winning teams in ICCAD 2016 contest. Future works include

how to avoid low possibility input and output matching results, more

sophisticated constraints in input solver and how to take constraints

such as don’t cares into consideration.

REFERENCES

[1] A. Abdollahi. Signature based boolean matching in the presence of
don’t cares. In ACM/IEEE Design Automation Conference (DAC), pages
642–647, 2008.

[2] A. Abdollahi and M. Pedram. A new canonical form for fast boolean
matching in logic synthesis and verification. In ACM/IEEE Design
Automation Conference (DAC), pages 379–384, 2005.

[3] G. Agosta, F. Bruschi, G. Pelosi, and D. Sciuto. A unified approach
to canonical form-based boolean matching. In ACM/IEEE Design
Automation Conference (DAC), pages 841–846, 2007.

[4] G. Agosta, F. Bruschi, G. Pelosi, and D. Sciuto. A transform-parametric
approach to boolean matching. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 28(6):805–817,
2009.

[5] M. Agrawal and T. Thierauf. The boolean isomorphism problem. In
IEEE Symposium on Foundations of Computer Science (FOCS), pages
422–430, 1996.

[6] L. Benini and G. De Micheli. A survey of boolean matching techniques
for library binding. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 2(3):193–226, 1997.

[7] B. Borchert, D. Ranjan, and F. Stephan. On the computational com-
plexity of some classical equivalence relations on boolean functions.
Theory of Computing Systems, 31(6):679–693, 1998.

[8] J. Cong and Y.-Y. Hwang. Boolean matching for lut-based logic blocks
with applications to architecture evaluation and technology mapping.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), 20(9):1077–1090, 2001.

[9] Z. Huang, L. Wang, Y. Nasikovskiy, and A. Mishchenko. Fast boolean
matching based on npn classification. In FPT, pages 310–313, 2013.

[10] H. Katebi and I. L. Markov. Large-scale boolean matching. In
IEEE/ACM Proceedings Design, Automation and Test in Eurpoe
(DATE), pages 771–776, 2010.

[11] S. Krishnaswamy, H. Ren, N. Modi, and R. Puri. Deltasyn: an efficient
logic difference optimizer for eco synthesis. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 789–796, 2009.

[12] A. Kuehlmann and F. Krohm. Equivalence checking using cuts
and heaps. In Proceedings of the 34th annual Design Automation
Conference, pages 263–268. ACM, 1997.

[13] C.-F. Lai, J.-H. R. Jiang, and K.-H. Wang. Boolean matching of function
vectors with strengthened learning. In IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), pages 596–601, 2010.

[14] C.-F. Lai, J.-H. R. Jiang, and K.-H. Wang. Boom: a decision procedure
for boolean matching with abstraction and dynamic learning. In
ACM/IEEE Design Automation Conference (DAC), pages 499–504,
2010.

[15] A. Mishchenko, S. Ray, and R. Brayton. Incremental sequential
equivalence checking and subgraph isomorphism.

[16] J. Mohnke, P. Molitor, and S. Malik. Limits of using signatures for
permutation independent boolean comparison. In ACM/IEEE Design
Automation Conference (DAC), pages 459–464, 1995.

[17] J. Mohnke, P. Molitor, and S. Malik. Application of bdds in boolean
matching techniques for formal logic combinational verification. Inter-
national Journal on Software Tools for Technology Transfer, 3(2):207–
216, 2001.

[18] N. Sorensson and N. Een. Minisat v1.13-a sat solver with conflict-
clause minimization. SAT, 2005:53, 2005.

[19] P. Swierczynski, M. Fyrbiak, C. Paar, C. Huriaux, and R. Tessier. Pro-
tecting against cryptographic trojans in fpgas. In Field-Programmable
Custom Computing Machines (FCCM), 2015 IEEE 23rd Annual Inter-
national Symposium on, pages 151–154, 2015.

[20] F. Wang, J. Zhang, L. Wu, W. Zhang, and G. Luo. Search Space
Reduction for the Non-Exact Projective NPNP Boolean Matching
Problem. In IEEE International Symposium on Circuits and Systems
(ISCAS), pages 596–601, 2017.

[21] C.-A. R. Wu, C.-J. J. Hsu, and K.-Y. Khoo. ICCAD-2016 CAD contest
in non-exact projective NPNP boolean matching and benchmark suite.
In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), page 40, 2016.

6D-2

598

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

