
Simultaneous Timing Driven Tree Surgery in Routing
with Machine Learning-based Acceleration

Peishan Tu, Chak-Wa Pui, Evangeline F. Y. Young
Department of Computer Science and Engineering

The Chinese University of Hong Kong, NT, Hong Kong
pstu,cwpui,fyyoung@cse.cuhk.edu.hk

ABSTRACT
In global routing, both timing and routability are critical criterions
to measure the performance of a design. However, these two ob-
jectives naturally conflict with each other during routing. In this
paper, a tree surgery technique is presented to adjust routing tree
topologies in global routing to fix timing. We formulate the problem
as a quadratic program (QP), which adjusts routing topologies of
all the nets from a global perspective and takes congestion into
consideration to trade off timing and routability objectives. We also
apply machine learning-based techniques to accelerate our algo-
rithm, which offers a fast and effective way to solve the problem.
Experimental results on ICCAD 2015 benchmarks show that our
algorithms can achieve 10.12% timing improvement with no sig-
nificant degradation in routability and wirelength. With machine
learning-based acceleration (MLA), our results can be obtained in
almost negligible runtime.

CCS CONCEPTS
• Hardware → Wire routing;

ACM Reference Format:
Peishan Tu, Chak-Wa Pui, Evangeline F. Y. Young. 2018. Simultaneous
Timing Driven Tree Surgery in Routing with Machine Learning-based
Acceleration. In GLSVLSI ’18: 2018 Great Lakes Symposium on VLSI, May
23–25, 2018, Chicago, IL, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3194554.3194556

1 INTRODUCTION
As design complexity increases, achieving timing closure becomes
even more challenging. Modern designs demand improved routing
strategies to meet timing requirements [12].

Since global routing plays an important role in both the place-
ment and routing phases, there are numerous previous works on
global routing. NCTUgr [15] began with rectilinear minimum span-
ning tree (RMST) topologies and utilized the rectilinear steiner
minimum tree (RSMT) topologies to guide the following monotonic
routing and negotiation-based rip-up and reroute. NTHURoute [2]

The work described in this paper was partially supported by a grant from the Research
Grants Council of the Hong Kong Special Administrative Region, China (Project No.
CUHK14206015). Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI ’18, May 23–25, 2018, Chicago, IL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5724-1/18/05. . . $15.00
https://doi.org/10.1145/3194554.3194556

also decomposed nets to two-pin nets based on routing tree topolo-
gies. Next, it utilized a rip-up and reroute approach, based on the
congested region identification, to further improve routability. Fas-
tRoute [18] first built routing trees for all the nets and then adjusted
the routing edges to reduce congestion. It then performed multi-
source multi-pin maze routing and 3-bend routing with an adaptive
cost function. MaizeRouter [17] initialized tree construction by
FLUTE [6], which is an approach to build RSMT. It then shifted
and retracted the edge to optimize congestion. Followed by layer
assignment, the maze routing was performed. Overall, these global
routers achieved good performance in terms of wirelength and
routing congestion. However, timing is not considered in these
routers.

Besides congestion driven routers mentioned above, some works
optimized timing and congestion together. The work [7] proposed a
global routing approach to incorporate both congestion and timing
optimization. However, it took tens of seconds to handle at most
400 nets, which may not be fast enough for current designs. In
addition, it targeted at small number of module nets instead of
large number of standard cell nets. The unified timing and conges-
tion optimizing (UTACO) [11] algorithm adopted a shadow price
mechanism which considered timing and congestion as the sum of
the price. It first built the minimum wire length steiner tree and
performed rip-up and reroute by optimizing the price of congestion
and timing. However, it modeled the delay of each net individually
which may neglect interaction among adjacent nets because actual
gate delay is affected by values from upstream and downstream
nets. The work [5] targeted at optimizing Chemical-Mechanical
Polishing(CMP) and timing in global routing besides congestion.
It modeled timing by a guide of wire density. However, the gate
model it considered is the lumped resistance model. The work [19]
proposed a routing algorithm that considered timing optimization,
buffer insertion and power reduction. It first constructed minimum
steiner trees and additional detoured trees and buffered trees are
then built to reduce congestion and timing. Next, it formulated an
ILP to decrease power consumption. However, the buffer tree con-
struction was time consuming and only wire delay was optimized
without gate delay considered.

In most global routers, a tree topology will be assigned to each
net, better timing can be achieved by considering timing in con-
struction of the routing tree topologies. Several algorithms [1] [3]
are proposed to build timing aware routing trees to achieve good
performance on balancing net and gate delay. However, most of
them adopt simple lumped resistance model as their gate delay
model, which is inaccurate and inadequate for modern designs.
Moreover, modern gate delay model requires that tree topologies
should not be optimized individually. Hence, in timing aware global

Session 11: Modern Routing: from Timing, Reliability
 to Machine Learning GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

261

https://doi.org/10.1145/3194554.3194556
https://doi.org/10.1145/3194554.3194556
https://doi.org/10.1145/3194554.3194556

2

𝑇1(𝐵)

𝑇2

𝐴

𝑆
𝑖

circuit element

𝑌

𝑘

(a) a simple circuit

𝐴

𝐵

𝑔𝑑𝐴→𝑌

𝑔𝑑𝐵→𝑌

𝑠𝑙𝑒𝑤𝐴

𝑠𝑙𝑒𝑤𝐵

𝑌
𝑠𝑙𝑒𝑤𝑌

(b) a circuit element

𝑆

𝑇1

𝑇2

𝑠𝑙𝑒𝑤𝑠

𝑠𝑙𝑒𝑤𝑇1

𝑠𝑙𝑒𝑤𝑇2

𝑑𝑆→𝑇1

𝑑𝑆→𝑇2

𝑖

(c) interconnection

𝑇1

𝑇2

𝑆

(d) RC model
Figure 1: Delay in the circuit.

routers, methods are needed to capture delay more accurately and
to consider the topologies of all the nets simultaneously.

In this work, we propose an algorithm to adjust the tree topolo-
gies of all the nets to fit timing from a global perspective and
consider routing congestion simultaneously. Our contributions are
summarized as follows:

• To optimize the tree topologies globally, a QP is formulated
to determine how to adjust the most critical sink connection
to optimize timing and congestion.

• We study various circuit properties and identified those that
contribute to timing. Later, these features will be used to
accelerate the QP-based tree surgery technique by a machine
learning-based technique.

• Experimental results show that we can improve timing of
the design significantly with small increase in routing con-
gestion.

The remaining of this paper is organized as follows. Section 2
introduces basic knowledge in timing analysis. Section 3 defines
our tree surgery technique (TST) in global route and its formulation.
Section 4 contains details of our algorithms, including quadratic
programming based TST and machine learning-based acceleration
technique. Section 5 shows the experimental results and we finally
conclude the work in Section 6.

2 PRELIMINARY
A simple circuit structure is shown in Figure 1(a). It consists of
circuit elements, IO pins and interconnections. The circuit elements
can be combinational logic elements or sequential elements. When
signals travel from the primary inputs to the primary outputs of the
circuit, the circuit elements and their interconnections will have
delays which affect the performance of the circuit.

2.1 Delay and Slew Calculation
A circuit element shown in Figure 1(b) is extracted from Figure 1(a)
which is marked red. It consists of input A, input B and output
Y , which is the source gate of net k . Based on a nonlinear de-
lay model (NLDM), gate delay дdA→Y is estimated based on a
2-dimensional table with inputs slew slewA and capacitance capk .
Generally, given specific index values x and y, gate delay can be
estimated by Equation (1). Assuming x1 < x < x2 and y1 < y < y2,

solutions of the bilinear interpolation can be computed as in Equa-
tion (1) and the coefficients can be obtained by Equation (2) using
z11, z12, z21 and z22. Details of the calculation are shown in [8].

L(x ,y) = a0 + a1 · x + a2 · y + a3 · x · y (1)
1 x1 y1 x1y1
1 x1 y2 x1y2
1 x2 y1 x2y1
1 x2 y2 x2y2

a0
a1
a2
a3

 =

z11
z12
z21
z22

 . (2)

Interconnect delay is calculated according to Elmore delay.
We make use of the slew calculation as proposed by [8].

2.2 Timing Analysis
Generally, timing analysis is propagated from the primary input
to the output to obtain the actual arrival time (aat) and from the
output to the input to obtain the required arrival time (rat). We
quantify the timing of a circuit at each node by the term slack
which is computed by slack = rat − aat . Statistic Timing Analysis
(STA) [8] is always performed to check the timing of the design.

3 PROBLEM FORMULATION
Given the placement of a design, nets are routed and timing in-
formation are obtained by STA. Our objective is to maximize the
total negative slack (TNS) by adjusting routing topologies, which
is called TST. In our work, TST tries to reconnect critical sinks to
maximize TNS by reducing wire delay and gate delay on the critical
path, which is formulated as Equation (3).

max TNS,
s .t . xi ∈ {0, 1} ∀i ∈ Nc ,

(3)

where xi denotes whether the most critical sink of each net i ∈ Nc
is reconnected and Nc is a set of net such that any net i ∈ Nc with
Pi sinks should satisfy the following constraints:

jix = argmin
l ∈Pi ,slackl <0

slackl , (4)

parent[jix] , si , (5)

where jix is the sink in net i whose slack is the most negative and
the parent of jix is not the source si . If the slack of every sink in net
i is positive, the routing topology of net i will remain unchanged.
Equation (5) requires that the sink jix with the worst negative slack
is not connected to the root. It may then be possible to connect it
to the root to improve the timing.

The explicit formulation of our objective is explained in the
following section.
4 TREE SURGERY TECHNIQUE (TST)
TST is an approach to modify the tree structure, such as reconnec-
tion. TST is first formulated as a QP to maximize the total negative
slack while congestion is also considered in the formulation. We
then extract circuit properties which can influence timing and a
machine learning based acceleration method is further proposed
to speed up the QP-based TST. The notations of variables in this
section are listed in Table 1.
4.1 QP-based TST (QPTST)

4.1.1 Timing Optimization. In order to achieve timing closure,
STA is used to detect the timing problem of a design. It measures

Session 11: Modern Routing: from Timing, Reliability
 to Machine Learning GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

262

3

Table 1: Variable notations in Section 4.1.
si the source of net i
jix the sink of net i whose slack is negative and the worst
l the input pin of the gate of si which affects actual arrival time

of si
j the net of input pin l

L(capi , slewl) gate delay дdl→S from input l to source node S of net i
do
si→j ix

delay from si to jix before reconnection on net i
dsi→j ix delay from si to jix after reconnection on net i
∆dsi→j ix delay difference before and after reconnection on net i ,

do
si→j ix

− dsi→j ix
capoi lumped capacitance of node i before deciding whether per-

forming reconnection on net i
capi lumped capacitance of node i after deciding whether perform-

ing reconnection on net i , capoi − ∆capixi
∆capi capacitance changed when reconnection is performed on net

i

slewo
l slew of pin l before deciding whether performing reconnec-

tion on net j
slewl slew of pin l after deciding whether performing reconnection

on net j, slewo
l − ∆slewlx j

∆slewl slew changed when reconnection is performed on net j
∆Li gate delay difference of source s in net i considering recon-

nection of net i and net j

slack (slackpo = ratpo − atpo) at each timing end point po ∈ PO ,
where PO is a set of primary outputs and register data ports. In STA,
timing failure can be detected if the slack of a timing end point
is negative (slackpo < 0). In order to reduce timing failure, our
objective is to maximize TNS at critical timing endpoints, which
is formulated in Equation (6). POn denotes the set of timing end
points with negative slack.

max
∑

po∈POn

ratpo − aatpo . (6)

The negative slacks of POn is mainly related to the nets with
negative slack sinks, which are called critical nets Nc . Hence, in this
work, we will improve the slack of critical nets instead of directly
optimizing the slack on the primary outputs, which is shown in
Equation (7).

max
∑
i ∈Nc

∑
l ∈P ci

ratl − aatl , (7)

where Pci is the set of critical sinks of net i . Since simultaneously
optimizing all the critical sinks of a net is hard to achieve and may
cause congestion, we further simplify the problem such that only
the most critical sink of each critical net will be considered and
formulate it as Equation (8).

max
∑
i ∈Nc

ratj ix − aatj ix . (8)

Since the slack value on one critical timing path is the same,
for each net, optimizing the slack of the source is equivalent to
optimize the slack of the most critical sink. Hence, Equation (8) can
be transformed into Equation (9).

max
∑
i ∈Nc

ratsi − aatsi

=max
∑
i ∈Nc

ratj ix − dsi→j ix − aatl − дdl→si

, (9)

where dsi→j ix is the net delay from si to jix , дdl→si is the gate delay
and the input pin l of the gate containing node si determines the
actual arrival time of source si . By assuming ratj ix and aatl are
constant, we can further simplify the problem as Equation (10).

min
∑
i ∈Nc

dsi→j ix + дdl→si

=min
∑
i ∈Nc

dsi→j ix + L(capi , slewl)
, (10)

where gate delay can be represented as L(capi , slewl).
In this work, we minimize delay dsi→j ix in Equation (10) by

reconnecting the critical sink jix directly to its source si . However,
reconnecting all the nets Nc will increase total capacitance capi
of each net i due to longer wirelength, which will increase the
gate delay L(capi , slewl). In order to maximize the delay reduction
dsi→j ix + L(capi , Slewl), the set of net that will be reconnected is
found by Equation (11).

max
n∑
i=1

(β · ∆Li + ∆dsi→j ix · xi),

s .t . xi = {0, 1} ∀i ∈ Nc ,

(11)

where xi is a binary variable indicating whether net i is recon-
structed. β is a user defined parameter. ∆dsi→j ix is the difference of
interconnect delay on the path from the critical sink jix to its source
si before and after reconnecting it to the root, which is computed
by Equation (12).

∆dsi→j ix = d
o
si→j ix

− dsi→j ix . (12)

∆Li implies how much gate delay at node si can be reduced, which
is computed by Equation (13).

∆Li =L(cap
o
i , slew

o
l) − L(capi , slewl)

=a1 · (cap
o
i − capi) + a2 · (slew

o
l − slewl)

+ a3 · (cap
o
i · slewo

l − capi · slewl)

, (13)

where L(capoi , slew
o
l) and L(capi , slewl) are the gate delay before

and after reconnection respectively. The value of ∆Li is determined
by reconnection of net i and net j , where net j influences the input
slew at node l . It is easy to see that ∆Li can be rewritten in the form
of summation of terms with xi and x j as in Equation (14), where
a0, a1, a2 and a3 can be obtained as shown in Section 2.1.

∆Li =(a1 + a3 · slew
o
l) · ∆capi · xi

+ (a2 + a3 · cap
o
i) · ∆slewl · x j

− a3 · ∆capi · ∆slewl · xi · x j

(14)

With Equation (11) and Equation (14), we can formulate a QP to
determine which net to be reconnected such that the total negative
slacks is optimized.

4.1.2 Congestion Optimization. When we improve the timing
by reconnecting sinks to their sources, routing congestion may
be increased. Hence, routability needs to be considered when we
optimize timing by reconnection. The general idea is to avoid recon-
necting the critical sink which may go through congested routing
regions.

More specifically, a penalty factor of each critical sink is obtained
and such penalty will be added to the objective function in order

Session 11: Modern Routing: from Timing, Reliability
 to Machine Learning GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

263

4

to consider routability. The penalty factor of each critical sink is
calculated from the overflow values of its source, which can be
obtained after global routing. To honor our original tree topologies,
both the steiner points and pins of each tree are treated as pins
in the global router. How we calculate the overflow penalty poi
of critical sink i is illustrated by an example given in Figure 2,
where a,b, c are the possible locations of the critical sink and s is
the source. For each critical sink i , poi can be obtained from the
overflow values of its source, which are oeu , oer , oed and oel in this
example. There are two kinds of situations as follows:

(1) The routing grid of the critical sink is either horizontal or
vertical to the one of its source, such as critical sinks a, c .

(2) Otherwise, such as critical sinks b.
For the first situation, poi is equal to the overflow of the edge cut
through by the connection between the sink and source. For the
other situation, poi is equal to the maximum overflow of the edges
cut through by the bounding box of the sink and source. In Figure 2,
the overflow penalties of a, b and c are oeu , max(oeu ,oer) and oer
respectively.

a

b

c
s

𝑒𝑢

𝑒𝑑

𝑒𝑙 𝑒𝑟

Figure 2: An example of how to calculate potential routing overflow.

By adding overflow penalty poi into the objective function as
shown in Equation (15), we can optimize timing and congestion
simultaneously.

max
n∑
i=1

(β · ∆Li + (∆ds→j ix + α · poi) · xi)

s .t . xi = {0, 1} ∀i ∈ Nc

(15)

4.2 Machine Learning-based Acceleration
(MLA)

In this section, we first study how the circuit properties will affect
the reconnection decisions. For example, the critical sinkmay have a
large detour to the source in the original tree topology and the slew
of the critical sink will be improved a lot after reconnection. We will
select some of these properties as features and use a classification

Figure 3: Feature Importances.

approach to speed up QPTST. In the following parts, we assume
each net i has n sinks and a source si and sink jix is the most critical
one.

The circuit properties we study can be categorized into three
types: (1) slew and delay related features as shown in Table 2, (2)
distance and length related features as shown in Table 3, and (3)
physics related features as shown in Table 4.

Since the ranges of the values of the extracted features f vary a
lot, Equation (16) is used for normalization.

f ′ =
f −min(f)

max(f) −min(f)
, (16)

wheremax(f) andmin(f) are obtained in the training set.
Large number of features may cause inefficiency and overfitting.

Hence, we need to reduce the number of features and features are
selected according to their importance. The importances of features
are obtained by a machine learning model. As shown in Figure 3,
features are ranked according to their importance produced by
Random Forest (RF) [14].

After feature selection and preprocessing, we formulate our
MLA problem as a classification problem. To be specific, a binary
classifier is applied to each critical net to decide whether it should
be reconnected and the results of QPTST are used to label the data.
Accuracy of the classifier is based on the results of QPTST. We
use the RF as our classification model and the top 15 important
circuit properties shown in Figure 3 are selected as final features. If
congestion is also considered, factor poi of each net i is added to
our features during classification.

Table 2: Delay And Slew Related Features.
DiffTopSlew (DiffTopDelay) The difference of sink jix slew (delay) and

the largest slew (delay) of net i except slew
(delay) of sink jix .

IsWorstSlew (IsWorstDelay) Whether slew (delay) of sink jix is worst in
net i .

WorstSlew (WorstDelay) Value of the worst slew (delay) of net i .
TargetSinkSlew (TargetSinkDelay) The slew (delay) of sink jix .
TargetDeltaSlew (TargetDeltaDelay) The difference slew (delay) of sink jix before

and after connecting to root.
CommonPathDelay The delay accumulated on branches which

connects s to jix path.

Table 3: Distance And Length Related Features.
SourceSinkPathDist The path length from source to the sink jix on the routing

tree.
SourceSinkDist The Manhattan distance between the position of source s

and sink j.
Table 4: Physics Related Features.

TotalNetCap The total capacitance of net i .
TotalNetRes The total net resistance.

a0,a1,a2 and a3 The coefficients of lookup table function of source s .

5 EXPERIMENTAL RESULTS
In the experiments, the benchmarks of the contest in ICCAD 2015[13]
are used and these benchmarks provide timing information. Open-
Timer [9] is used for STA. Our work is implemented in C++ and
tested on a 2.1 GHz Intel Linux machine with a 64 GB memory.
IBM ILOG CPLEX V12.7.0 [10] is used to solve the QP.

5.1 QPTST Results
5.1.1 Timing Results. The results of QPTST is shown in Table 6.

Evaluation is performed by Opentimer [9] and our results provide

Session 11: Modern Routing: from Timing, Reliability
 to Machine Learning GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

264

5

Table 5: ICCAD 2015 Benchmarks Information

Designs #nodes #nets clock periods
(ns)

superblue10 1876103 1898119 10
superblue1 1209716 1215710 9
superblue16 981559 999902 5.5
superblue18 768068 771542 7
superblue3 1213253 1224979 10
superblue4 795645 802513 6
superblue5 1086888 1100825 9
superblue7 1931639 1933945 5.5

s10 s1 s16 s18 s3 s4 s5 s7

−10

0

10

20

30
Timing Improvement

Overflow Increase

w/o congestion
w/ congestion

Figure 4: Performance analysis on timing and routing congestion.

interconnection information to it. FLUTE Baseline shows timing
results when all the nets are constructed by FLUTE, which does
not optimize timing. Direct Connection is the experiment that the
most critical sink of every net is reconnected to its source. It can
shorten path length of all the nets but will increase wirelength a
lot. QPTST is our result and congestion-aware QPTST is the algo-
rithm described in Section 4.1.2. β is set to 2500. QPTST takes 27.6s
while congestion-aware QPTST takes 30.71s on average. r_wns and
r_tns denote WNS and TNS improvement over the FLUTE baseline.
r_stwl and r_d denote tree length improvement over the FLUTE
baseline and direct connection. Direct Connection improves timing
by 1.10% on worst negative slack (WNS) and 6.81% on total negative
slack (TNS). However, it increases 18.74% wirelength as expected.
QPTST obtains 2.05% and 10.12% improvement on WNS and TNS.
The wirelength is only worse by −0.55%. If we also consider con-
gestion in the objective function, timing is not as good as QPTST
but can still get 1.74% and 8.55% improvement on WNS and TNS.
The wirelength is improved compared with QPTST. All the results
of our algorithms achieve better wirelength and timing compared
with the FLUTE baseline and direct connection.

Besides using FLUTE as baseline, we also performed QPTST
experiments on timing driven routing tree constructed by the PD
method mentioned in [1]. Shown in Table 7, our algorithm achieves
1.7% and 7.11% improvement on WNS and TNS with loss of 0.39%
wirelength. It shows that our algorithm is efficient on both non-
timing aware trees and timing driven routing.

5.1.2 Congestion Results. Nets are decomposed to two-pin nets
by FLUTE first and NCTUgr [16] is performed to measure conges-
tion. As shown in Table 8, r denotes the improvement compared
with FLUTE based net decomposition. The overflow of QPTST and
congestion aware QPTST increases 1.91% and 1.15% respectively.

Wirelength increases 1.29% and 0.79% respectively. In congestion
aware TST, α is set to 1000. Our algorithm QPTST can improve
timing around 10% but congestion is increased by 1.91%.

5.1.3 Analysis. Figure 4 shows the analysis of performance of
our algorithms on timing and congestion. The part above 0 of
the chart is timing improvement and the other part is plotted as
increase of overflow. It is obvious that our algorithms can achieve
significantly timing improvement with small increase in congestion.

5.2 Machine Learning-based Acceleration
Results

As mentioned in Section 4.2, top 15 features are selected in our
experiments. Data from 4 benchmarks (superblue4, superblue16,
superblue18 and superblue7) with scaled features are fed into cross
validation and our machine learning model is trained by random
forest method. In addition to designs listed in Table 5, we also adopt
placement results generated by top 3 contestants in [13]. There-
fore, test benchmark sets (superblue1, superblue3, superblue5 and
superblue10) with each of 7 placement results are tested. Bench-
marks (superblue4, superblue16, superblue18 and superblue7) with
untrained placement results from contestants are also tested.

The average evaluation of each benchmark is shown in the Ta-
ble 9. We can see from the table that runtime is reduced a lot.
Moreover, we achieves a relative high accuracy classification rate.
The final timing and wirelength improvement are also listed in
Table 9. Classification Over Base shows timing results compared
with baseline and Classification Over QP shows the comparison
with the results of QPTST. The timing and wirelength quality are
very compatible compared with our QPTST results.
6 CONCLUSION
Timing is a critical issue for the design optimization and it is hard to
improve timing without increasing routing congestion. In this work,
we formulate the tree surgery problem as a QP, which optimizes
gate delay and net delay with adjacent nets considered. In order to
enhance routability, congestion is also optimized in our algorithm.
To speed up the process, a machine learning-based algorithm is
proposed and features related to timing optimization are extracted
from the design. In the experimental results, our algorithms can
achieve high quality of timing improvement.
REFERENCES
[1] Charles J Alpert, Andrew B Kahng, CN Sze, and Qinke Wang. 2006. Timing-

driven steiner trees are (practically) free. In Proceedings of the 43rd annual Design
Automation Conference. ACM, 389–392.

[2] Yen-Jung Chang, Yu-Ting Lee, Jhih-Rong Gao, Pei-Ci Wu, and Ting-Chi Wang.
2010. NTHU-route 2.0: a robust global router for modern designs. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 29, 12 (2010),
1931–1944.

[3] Genjie Chen, Peishan Tu, and Evangeline FY Young. 2017. SALT: Provably
Good Routing Topology by a Novel Steiner Shallow-Light Tree Algorithm. In
Proceedings of the 2017 IEEE/ACM international conference on Computer-aided
design. ACM.

[4] Minsik Cho and David Z Pan. 2007. BoxRouter: a new global router based on
box expansion and progressive ILP. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 26, 12 (2007), 2130–2143.

[5] Minsik Cho, David Z Pan, Hua Xiang, and Ruchir Puri. 2006. Wire density driven
global routing for CMP variation and timing. In Proceedings of the 2006 IEEE/ACM
international conference on Computer-aided design. ACM, 487–492.

[6] Chris Chu and Yiu-ChungWong. 2008. FLUTE: Fast lookup table based rectilinear
steiner minimal tree algorithm for VLSI design. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 27, 1 (2008), 70–83.

Session 11: Modern Routing: from Timing, Reliability
 to Machine Learning GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

265

6

Table 6: Experimental Results of Tree Surgery Technique.

Benchmarks FLUTE Baseline** Direct Connection* QPTST Congestion Aware QPTST
WNS r_wns TNS r_tns stWL r_stwl r_wns r_tns r_stwl r_wns r_tns r_stwl r_d CPU(s) r_wns r_tns r_stwl r_d CPU(s)

superblue10 -1.65 1.00 -33.10 1.00 2.05 1.00 0.47% 2.47% -13.92% 0.92% 3.88% -0.79% 11.52% 69.73 0.00% 2.11% -0.48% 11.80% 77.03
superblue1 -0.50 1.00 -0.46 1.00 0.96 1.00 -0.26% 3.20% -19.76% 1.76% 7.92% -0.38% 16.18% 15.60 1.78% 4.81% -0.37% 16.19% 25.05
superblue16 -0.46 1.00 -0.76 1.00 0.93 1.00 3.58% 25.18% -14.74% 3.94% 31.58% -0.38% 12.52% 6.42 3.94% 29.57% -0.36% 12.54% 15.21
superblue18 -0.46 1.00 -1.03 1.00 0.58 1.00 -0.75% 2.10% -23.30% 2.27% 4.45% -0.18% 18.75% 17.93 2.27% 4.45% -0.18% 18.75% 13.01
superblue3 -1.01 1.00 -1.50 1.00 1.14 1.00 4.82% 5.79% -18.87% 5.61% 7.16% -0.11% 15.78% 6.12 5.37% 6.76% -0.09% 15.80% 15.10
superblue4 -0.62 1.00 -3.47 1.00 0.71 1.00 0.90% 10.81% -18.51% 1.60% 15.33% -1.79% 14.10% 48.95 0.47% 15.19% -1.58% 14.29% 57.36
superblue5 -2.57 1.00 -6.95 1.00 1.08 1.00 0.07% 1.42% -17.24% 0.32% 4.17% -0.62% 14.18% 11.93 0.12% 2.29% -0.27% 14.48% 22.02
superblue7 -1.51 1.00 -1.84 1.00 1.40 1.00 0.00% 3.54% -23.56% 0.00% 6.46% -0.13% 18.96% 44.13 0.00% 3.21% -0.08% 19.00% 20.91

Average -1.10 1.00 -6.14 1.00 1.11 1.00 1.10% 6.81% -18.74% 2.05% 10.12% -0.55% 15.25% 27.60 1.74% 8.55% -0.43% 15.35% 30.71

*Direct Connection: directly connect the critical sinks to the source for all nets.
**WNS is in 104ps . TNS is in 106ps . stWL is in 108um.

Table 7: Comparisons Between PD Based Tree Construction and QPTST.

Benchmarks PD Baseline Direct Connection QPTST
WNS r_wns TNS r_tns stWL r_stwl r_wns r_tns r_stwl r_wns r_tns r_stwl r_d CPU(s)

superblue10 -1.66 1.00 -33.14 1.00 2.12 1.00 4.65% 2.78% -10.97% 5.12% 4.12% -0.60% 9.34% 57.87
superblue1 -0.50 1.00 -0.47 1.00 1.01 1.00 -0.86% 1.53% -14.78% 0.90% 5.46% -0.24% 12.67% 14.14
superblue16 -0.46 1.00 -0.69 1.00 0.96 1.00 2.41% 11.21% -12.12% 3.10% 19.44% -0.28% 10.56% 6.01
superblue18 -0.45 1.00 -1.04 1.00 0.63 1.00 -0.74% -0.29% -18.12% 1.10% 2.41% -0.14% 15.23% 4.43
superblue3 -1.01 1.00 -1.51 1.00 1.22 1.00 2.02% 2.90% -14.80% 2.71% 4.15% -0.07% 12.84% 5.91
superblue4 -0.63 1.00 -3.54 1.00 0.75 1.00 -0.63% 9.66% -14.50% -0.02% 13.20% -1.29% 11.53% 39.80
superblue5 -2.57 1.00 -6.95 1.00 1.11 1.00 -0.18% 0.12% -13.43% 0.10% 2.91% -0.45% 11.44% 12.08
superblue7 -1.52 1.00 -1.81 1.00 1.51 1.00 0.00% 1.06% -18.69% 0.56% 5.24% -0.09% 15.67% 11.46

Average -1.10 1.00 -6.14 1.00 1.16 1.00 0.83% 3.62% -14.68% 1.70% 7.11% -0.39% 12.41% 18.96

Table 8: Comparisons Before and After Considering Congestion in QPTST.
FLUTE Based Net Decomposition QPTST Congestion Aware QPTST

Benchmarks WL r Overflow r WL r Overflow r WL r Overflow r
superblue10 1.71 1.00 7696.32 1.00 1.72 -1.69% 7768.53 -0.94% 1.71 -1.03% 7697.78 -0.02%
superblue16 0.98 1.00 684.93 1.00 0.98 -0.15% 688.89 -0.58% 0.98 0.17% 685.04 -0.02%
superblue18 .63 1.00 74.81 1.00 0.63 0.37% 75.08 -0.36% 0.63 0.55% 74.81 0.00%
superblue1 0.78 1.00 3297.61 1.00 0.82 -3.16% 3603.07 -9.26% 0.82 -2.46% 3593.22 -8.96%
superblue3 1.07 1.00 2538.63 1.00 1.07 -0.83% 2538.63 0.00% 1.07 -0.83% 2538.63 0.00%
superblue4 0.77 1.00 749.92 1.00 0.78 -2.24% 778.55 -3.82% 0.77 -0.18% 751.39 -0.20%
superblue5 0.73 1.00 3060.91 1.00 0.73 -1.72% 3060.80 0.00% 0.73 -1.72% 3060.80 0.00%
superblue7 .37 1.00 3972.55 1.00 1.38 -0.93% 3984.21 -0.29% 1.37 -0.81% 3972.87 -0.01%

Average 1.01 1.00 2759.46 1.00 1.01 -1.29% 2812.22 -1.91% 1.01 -0.79% 2796.82 -1.15%
Table 9: Experimental Results of Machine Learning Acceleration (MLA).

Benchmarks Classification Accuracy Classification Over Base Classification Over QP
TP FP FN TN ACC CPU(s) r_wns r_tns r_wl r_wns r_tns r_wl

superblue18 2047.17 63.00 41.33 1483.67 97.13% 1.21 0.09% 3.89% -0.18% -0.01% 0.01% 0.00%
superblue16 3037.67 122.50 96.33 1833.33 95.53% 1.54 5.24% 29.54% -0.32% 0.10% 0.14% 0.00%
superblue7 3392.20 119.80 157.00 1769.00 94.91% 1.59 0.00% 5.49% -0.13% 0.00% 0.41% 0.00%
superblue4 15374.83 92.83 151.33 12844.83 99.14% 6.39 1.55% 13.87% -1.78% -0.02% 0.11% 0.00%
superblue1 4651.14 798.71 1201.43 4932.86 82.74% 2.98 1.71% 6.10% -0.38% 0.42% 1.28% -0.06%
superblue3 1587.14 310.00 288.57 1211.43 82.38% 1.13 3.67% 5.32% -0.10% 0.37% 1.26% -0.05%
superblue5 5552.86 707.14 1182.57 3803.57 83.19% 2.97 0.25% 3.40% -0.57% 0.05% 0.06% -0.01%
superblue10 20330.29 2107.29 1974.43 9563.00 87.99% 7.73 0.73% 3.71% -0.76% 0.07% 0.55% -0.08%

[7] Jiang Hu and Sachin S Sapatnekar. 2000. A timing-constrained algorithm for
simultaneous global routing of multiple nets. In Proceedings of the 2000 IEEE/ACM
international conference on Computer-aided design. IEEE Press, 99–103.

[8] Jin Hu, Greg Schaeffer, and Vibhor Garg. 2015. TAU 2015 contest on incremental
timing analysis. In Computer-Aided Design (ICCAD), 2015 IEEE/ACM International
Conference on. IEEE, 882–889.

[9] Tsung-Wei Huang and Martin DF Wong. 2015. OpenTimer: A high-performance
timing analysis tool. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design. IEEE Press, 895–902.

[10] IBM. 2017. CPLEX. (2017). https://www-01.ibm.com/software/commerce/
optimization/cplex-optimizer/

[11] Tong Jing, Xianlong Hong, Haiyun Bao, Yici Cai, Jingyu Xu, Chungkuan Cheng,
and Jun Gu. 2003. UTACO: a unified timing and congestion optimizing algorithm
for standard cell global routing. In Proceedings of the 2003 Asia and South Pacific
Design Automation Conference. ACM, 834–839.

[12] Andrew B Kahng. 2015. New game, new goal posts: A recent history of timing
closure. In Proceedings of the 52nd Annual Design Automation Conference. ACM,
4.

[13] Myung-Chul Kim, Jin Hu, Jiajia Li, and Natarajan Viswanathan. 2015. Iccad-2015
cad contest in incremental timing-driven placement and benchmark suite. In

Proceedings of the IEEE/ACM International Conference on Computer-Aided Design.
IEEE Press, 921–926.

[14] Andy Liaw, Matthew Wiener, et al. 2002. Classification and regression by ran-
domForest. R news 2, 3 (2002), 18–22.

[15] Wen-Hao Liu, Wei-Chun Kao, Yih-Lang Li, and Kai-Yuan Chao. 2013. NCTU-GR
2.0: multithreaded collision-aware global routing with bounded-length maze
routing. IEEE Transactions on computer-aided design of integrated circuits and
systems 32, 5 (2013), 709–722.

[16] Wen-Hao Liu, Cheng-Kok Koh, and Yih-Lang Li. 2013. Optimization of place-
ment solutions for routability. In Design Automation Conference (DAC), 2013 50th
ACM/EDAC/IEEE. IEEE, 1–9.

[17] Michael D Moffitt. 2008. MaizeRouter: Engineering an effective global router.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
27, 11 (2008), 2017–2026.

[18] Min Pan, Yue Xu, Yanheng Zhang, and Chris Chu. 2012. FastRoute: An efficient
and high-quality global router. VLSI Design 2012 (2012), 14.

[19] Ahmed Youssef, Zhen Yang, Mohab Anis, Shawki Areibi, Anthony Vannelli, and
Mohamed Elmasry. 2010. A power-efficient multipin ILP-based routing technique.
IEEE Transactions on Circuits and Systems I: Regular Papers 57, 1 (2010), 225–235.

Session 11: Modern Routing: from Timing, Reliability
 to Machine Learning GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

266

https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Delay and Slew Calculation
	2.2 Timing Analysis

	3 Problem Formulation
	4 Tree Surgery Technique (TST)
	4.1 QP-based TST (QPTST)
	4.2 Machine Learning-based Acceleration (MLA)

	5 Experimental Results
	5.1 QPTST Results
	5.2 Machine Learning-based Acceleration Results

	6 Conclusion
	References

