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ABSTRACT

Different from global routing, detailed routing takes care of many de-

tailed design rules and is performed on a significantly larger routing

grid graph. In advanced technology nodes, it becomes the most compli-

cated and time-consuming stage. We propose Dr. CU, an efficient and

effective detailed router, to tackle the challenges. To handle a 3D de-

tailed routing grid graph of enormous size, a set of two-level sparse data

structures is designed for runtime and memory efficiency. For handling

the minimum-area constraint, an optimal correct-by-construction path

search algorithm is proposed. Besides, an efficient bulk synchronous

parallel scheme is adopted to further reduce the runtime usage. Com-

pared with the first place of ISPD 2018 Contest, our router improves

the routing quality by up to 65% and on average 39%, according to the

contest metric. At the same time, it achieves 80ś93% memory reduction,

and 2.5ś15× speed-up.

1 INTRODUCTION

Because of its enormous computational complexity, VLSI routing is usu-

ally performed in two stages, global and detailed. In the global routing

stage, the routing space is split into an array of regular cells, where a

coarse-grained routing solution is generated. It optimizes wire length,

via count, routability, timing and other metrics with a global view. De-

tailed routing, on the other hand, realizes the global routing solution

by considering exact metal shapes and positions. It takes care of many

complicated detailed design rules (e.g., parallel-run spacing, end-of-line

spacing, cut spacing, minimum area, etc). Its solution quality directly in-

fluences various eventual design metrics such as timing, signal integrity,

chip yield [1]. Meanwhile, its solution space, a 3D grid graph, is signifi-

cantly larger than that of global routing. In advanced technology nodes,

detailed routing becomes the most complicated and time-consuming

stage [2].

During the past decade, many approaches were proposed to com-

plete fast and high-quality global routing with sustaining progress

(e.g., FGR [3], FastRoute [4], BoxRouter [5], Ancher [6], GRIP [7], Bon-

nRoute [8], NCTU-GR [9]). However, there is insufficient effort for

exploring efficient and effective detailed routers in academia. Regu-

larRoute [1] encourages regular routing patterns and exploits a max-

imum independent set formulation for better design rule satisfaction.
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Figure 1: An example 3D detailed routing grid graph. In this ex-

ample, preferred directions of metal-1 (M1) and M3 layers are

both horizontal, while that of M2 is vertical.

MANA [10] considers end-of-line spacing andminimum length of a wire

segment in maze routing. The work in [11] presents the data structures

and algorithms for detailed routing used in BonnRoute. Besides, several

specific issues in detailed routing have been discussed. For example,

methods for the pin access optimization are proposed in [12ś14]. For

others, the impact of various manufacturing technologies have been

dealt with, including triple patterning [15ś17], self-aligned doubling

patterning [18] and directed self-assembly [19].

As the feature size scales down, not only the problem size but also

the complexity of design rules of detailed routing becomes increasingly

challenging. Moreover, many detailed routers heavily relies on post

processing for fixing design rule violations. Design rule dimensions,

however, do not scale well with feature miniaturization (e.g., feature

size decreases much faster than minimum area values) and require

relatively more spaces for fixing. In this way, a post processing step

fails more frequently [11]. Therefore, we proposes Dr. CU, a detailed

routing framework that is superiorly scalable in runtime as well as

memory usage and provides more correct-by-construction design rule

satisfaction. Our contributions can be summarized as follows.

• We designed a set of two-level sparse data structures for a 3D

detailed routing grid graph of enormous size.

• We proposed an optimal correct-by-construction path search that

captures the minimum-area constraint.

• We also proposed an efficient bulk synchronous parallel scheme

to further reduce the turn-around time of the detailed routing

process.

2 PRELIMINARIES

Before illustrating the details of our data structures and algorithms, the

problem formulation of detailed routing is introduced in this section.



ASPDAC ’19, January 21–24, 2019, Tokyo, Japan G. Chen, C.W. Pui, H. Li, J. Chen, B. Jiang, and E.F.Y. Young

2.1 Routing Space

VLSI Routing is on a stack of metal layers. A wire segment on a layer

runs either horizontally or vertically. Each layer has a preferred direc-

tion for routing, which benefits manufacturability [14], routability and

design rule checking [1]. The preferred directions of adjacent layers

are perpendicular to each other in common design practice. Besides,

regularly-spaced tracks, where the majority of wires are routed on, can

be predefined according to the wire width and parallel-run spacing

constraint. In this work, wrong-way and off-track wires are considered

only for short connections (especially to pins). Wires on neighboring

layers can be electrically connected by vias. The tracks on all metal

layers define a 3D grid graph for detailed routing, as Fig. 1 shows. In

this grid graph, an edge represents either a via or a wire segment.

Over the chip, there are some routing obstacles that vias and wire

segments should avoid to prevent short and spacing violations. In de-

tailed routing, the relatively small obstacles within standard cells (e.g.,

pins and intra-cell wires) should also be handled.

Assuming that a global routing result is already well optimized for

certain metrics (e.g., timing, routability, power), a detailed router needs

to honor the global routing result as much as possible. The optimized

metrics are thus kept with detailed design rules handled. In this paper,

the 3D global routing result is referred as routing guide, and out-of-guide

routing (either wire or via) is penalized.

2.2 Design Rules

The most fundamental and representative design rules handled by de-

tailed routing are as follows [2]. (1) Short: a via metal or wire metal

cannot overlap with another metal object like via metal, wire metal,

blockage, or pin, except when the two metal objects belong to the same

net. (2) Spacing: the spacing between two metal objects should be large

enough. (There are several types of spacing requirement, including end-

of-line spacing, parallel-run spacing and cut spacing. Refer to [2] for

detailed definitions.) (3) Minimum area: the area of a metal polygon is

required to be above a threshold.

2.3 Problem Formulation

The detailed routing problem can be formally defined as follows. Given

a placed netlist, routing guides, routing tracks and design rules, route

all the nets to minimize a weighted sum of (i) total wire length, (ii) total

via count, (iii) non-preferred usage (including out-of-guide and off-track

wires/vias, and wrong-way wires), and (iv) design rule violations (in-

cluding short, spacing and minimum-area violations). Note that design

rule violations are highly discouraged and suffer much more significant

penalty than others.

3 TWO-LEVEL SPARSE DATA STRUCTURES

The grid graph for detailed routing is similar to that for global routing in

structure, but is significantlymore fine-grained and thus hasmuch larger

scale. To support the detailed routing algorithms with both economic

memory usage and efficient query, we design a set of two-level data

structures for the routing grid graph.

There are a global grid graph and local ones, as Fig. 2 shows. The

global grid graph data structure stores the graph implicitly without

instantiating all vertices. Here, the information of routed edges are

stored sparsely by balanced binary search trees (BSTs) and intervals.

The local grid graph, a local cache of the global one, is created for routing

a net. It is a sparse subgraph of the full-chip 3D grid graph on the routing

region of a net, where edge costs are readily available for conducting

maze routing.

routing region of a net routing topologylocal grid graph

global grid graph

record 

edge 

usage

maze 

route

query
cache

Figure 2: An overview of the two-level grid graph data struc-

tures.

3.1 Sparse Global Grid Graph

Edges of routed nets are called routed edges. Note that the an edge can

be either a via or a wire segment. The global grid graph stores routed

edges in the sparse data structure based on BSTs and intervals.

3.1.1 Vertex Index vs. Location. In the full-chip grid graph, a vertex

is uniquely defined by a 3D index, which is a tuple of layer index, track

index (in the non-preferred direction), and relative index along the track

(in the preferred direction). The store and query of vias and wires in

the global grid graph are done by index instead of by location, because

the structural information is clearer with indexes. For example, given a

vertex with its 3D index, its neighbors can be obtained immediately.

3.1.2 BST and Interval Based Storage. It is very expensive to use a

full-chip 3D direct-address table for storing routed edges. First, its size

will be unaffordable (1G vertices for just 10 metal layers and 10k tracks

on each layer) [8]. Besides the time-consuming memory allocation and

initialization, some queries are also inefficient if using this data structure.

For example, to record, query or remove the usage of a wire segment

(e.g., spanning 1000 vertices), we need to change or check all the 1000

vertices on it.

Instead of a 3D direct-address table, we use a 2D table for the layer

dimension and track dimension (i.e., non-preferred direction), and use

BST and intervals in the third dimension (i.e., preferred direction) for

sparseness. For a track, there are three balanced BSTs, two for storing

routed vias and one for storing routed wires. For vias, normal BSTs with

indexes in the preferred direction being keys are used. Each via is stored

twice, one on the lower track and the other one on the upper track.

The duplication benefits the range searches that are needed on both the

lower and upper tracks. This will be illustrated in detail later. For wire

segments, a BST with nodes representing non-overlapping intervals is

employed. In this way, the memory used is linear to the number of wire

segments instead of vertices involved.

3.1.3 Conflict with Obstacles. For obstacles (including pins) with

irregular shapes, the edges that may cause short/spacing violations with

them are marked in advance. Since obstacles cannot be ripped up, the

marking is a one-time effort. Via-obstacle violations are more difficult

to capture than wire-obstacle violations, because there are several types

of vias that can be chosen from. Essentially, all via types need to be

attempted. A via location should be penalized if and only if all via types

fail to satisfy the spacing requirement with its neighboring obstacles.

Note that conflict with pins is net-dependent, because it is fine for a
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via-lower-wire conflict LUT
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(a) Query a single candidate via
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(b) Query a set of neighboring candidate vias

Figure 3: Query the violations on candidate via edges due to the

previously routed edges in the global grid graph.

via or wire to be close to a pin of the same net. Therefore, the marking

should be net-dependent.

3.2 Global Grid Graph Query by Look-up Table

When routing a net, the edges that will be considered for using are re-

ferred as candidate edges. Their costs (possibly penalized by the short/spacing

violations) will be queried from the global grid graph before running

maze routing.

Different from the conflict with obstacles, the conflict with routed

edges will change during the routing process and cannot be marked in

advance. Considering various design rules and a significant number of

candidate edges, a proper scheme that can efficiently query their costs

is in need. We build several via/wire conflict LUTs to achieve that.

3.2.1 Via/Wire Conflict Look-up Table. For routing a net, the metal

short with routed edges can be trivially detected as interval overlapping.

For the following spacing violation conflicts, their identification is less

straight-forward:

• Via-via conflicts: for a specific via, it may conflict not only with

vias on the same cut layer (same-layer vias) but also with vias

on the adjacent cut layers. The conflict between same-layer vias

may be due to spacing rules on either cut layer, metal layers, or

both. The conflict between different-layer vias is caused by metal

spacing requirement.

• Via-wire conflicts: a via may have spacing violations with wire

on the lower and the upper metal layers that it connects.

• Wire-wire conflicts: two wires may be too close to each other at

their ends and violate the spacing constraint.

The above violations can be detected during routing. However, these

detection operations are extremely frequent and on-the-fly detections

are too time-consuming. Since we are working on a relatively regular

grid graph, some light-weight LUTs can accelerate the process. Con-

ceptually, via/wire conflict LUTs immediately tells what neighboring

edges will conflict with a given edge. There are several types of them:

when the given edge is a via ei , a via-lower-wire conflict LUT tells what

neighboring wire segments in the lower metal layer of ei cause conflicts

with ei ; similarly, given a wire segment ej , a wire-upper-via conflict LUT

tells what vias connecting to the layer above ej may be conflicted with

ej ; so on and so forth. Two conflict LUTs are called the inverse LUT to

each other if the types of the given edge and the neighboring edges

are swapped. For example, the inverse of a via-lower-wire LUT is a

wire-upper-via LUT.

Regarding the indexing and sizes of conflict LUTs, we explain the via-

via one as an example. For two same-layer vias, their distance is unique

for specific track index differences in the lower metal layer and the

upper metal layer, because of the equal spacing of the tracks. Therefore,

only one LUT is needed for each layer. Such an LUT itself is 2D and

is indexed by the track index differences. For two different-layer vias,

three consecutive metal layers are involved. Using their corresponding

vertices on the middle metal layers for indexing, their distance in the

non-preferred direction is solely determined by the difference in track

indexes. However, in the preferred direction, vertices along a track may

have irregular spacing (e.g., M2 in Fig. 1). As a result, a layer needs a

series of 2D LUTs, where each LUT serves for vertices with a specific

index in the preferred direction.

3.2.2 Single Edge Query. The cost of a candidate edge consists of

a unit edge cost and some possible penalty caused by two types of

violations. The first type is violations with obstacles, which has been

directly marked in the BSTs. The second type is violations with routed

edges. The via/wire conflict LUTs tell the neighboring edge positions

that will have conflict with the candidate edge. The only thing to do is

to check whether the positions are occupied. An example is shown by

Fig. 3(a). For the candidate via, a same-layer via-via conflict is detected

with the help of the corresponding LUT. Meanwhile, there is no via-

lower-wire conflict because no routed wire exists at the two potentially

conflicting positions specified by the LUT.

3.2.3 Batch/Long Edge Query. Usually, a set of neighboring edges

(either vias or wire segments) along a track are all candidate edges for

routing a net. If querying them individually, O(k logn) time is needed

with k being the number of candidate edges and n being the BST size1. A

range search on BST can improve the efficiency. Given a set of candidate

edges along a track and the corresponding LUTs, a query region where

routed edges may have conflicts with can be identified. By range search

on BST according the this query region and referring to the inverse

LUTs, the conflicted candidate edges can be found. An example on

detecting same-layer via-via conflict is illustrated by Fig. 3(b). First, the

query region and two routed vias within it are identified. Starting from

the two routed vias, the inverse LUT (the same-layer via-via conflict

LUT) finds five conflicted candidate vias.

Suppose the number of routed edges within the query region ism. The

range search on BST takesO(m+ logn) time, which can be conducted by

finding the first and last tree nodes within the range. Besides,m = O(k).

Note thatm can be significantly smaller than k because a long routed

wire segment is stored as a long interval instead of a bunch of short

edges in a BST. Therefore, the time for retrieving the routing cost of

the k candidate edges is O(k) +O(m + logn) = O(k + logn) instead of

O(k logn). Moreover, the cost of a long wire segment may be queried

as a whole, then the time is further improved to O(m + logn).

In the batch query along a track, routed vias to both lower and upper

layers should be considered. As mentioned in Section 3.1.2, a via is

stored twice on both its lower and upper tracks. In this way, efficient

BST range search along either track is enabled.

1 To be more rigorous, since multiple BSTs (for vias or wires, for different layers) may all
need to be queried, n represents the largest size of all BSTs.
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redundant vertex

(a) Before removing

(b) After removing

Figure 4: Long edges by removing redundant vertices.

3.3 Sparse Local Grid Graph

The local grid graph of a net is the subgraph of the full-chip 3D grid

graph within its routing region (the routing guide with possibly minor

expansion). In terms of data structures, it caches the graph structure

and all edge costs of the subgraph by direct-address tables, supporting

the maze routing.

Its sparsity is in two aspects. First, only the routing region is consid-

ered, which is substantially smaller than the full-chip region. Second,

many vertices become redundant in this subgraph and are removed.

3.3.1 Routing Region. When routing a net, only the region around

its routing guide is considered due to two reasons. First, detailed routing

should honor global routing solution, i.e., routing guides, because many

objectives (e.g., timing, routability) are optimized in global routing. For

some local congestions, global routing may not be able to model and

resolve, so minor out-of-guide routes may be necessary. However, such

disturbance should be minimized. Second, maze routing on the full-chip

3D grid graph will suffer from prohibitive runtime due to its enormous

scale. In our implementation, the routing region of a net is expanded

by a small margin from its routing guide. All out-of-guide edges are

penalized. For difficult-to-route nets, the expansion margin may be

increased.

3.3.2 Long Edge. Conceptually, the local grid graph is simply a sub-

graph induced by vertices within the routing region. However, many

vertices in the subgraph have only two neighbors remained and become

redundant, as Fig. 4(a) shows. In this snippet of the subgraph, many

vertices originally have neighbors on adjacent layers that are out of

the routing region now. They have thus only two neighbors left on the

track. In this way, as long as such a vertex does not belong to a pin, it

can be safely removed with the two connected edges merging into one.

This compressing step cuts down the problem size without affecting the

final results. Both memory usage and runtime can be reduced.

3.3.3 Explicit Storage. In the global grid graph, vertices are implied

by 3D indexes but are not instantiated. To support efficient vertex-

wire operation in maze routing (e.g., recording the prefix and cost,

propagating to neighbors), the local graph instantiates all its vertices

and edges. To be more specific, vertices are assigned with continuous

indexes staring from zero, and adjacency lists are also created. In this

way, any vertex/edge information can be efficiently stored and retrieved

by direct-address tables (instead of hash tables or BSTs).

4 ROUTING ALGORITHM

In routing (especially detailed routing), sequential maze routing is

widely adopted due to its scalability (compared with concurrent meth-

ods like [7, 20]) and flexibility (for capturing various objectives and

M1 track M2 track M1 wire M2 wire via

𝑺
𝑻

(a)

𝑺
𝑻

(b)

𝑺
𝑻

(c)

𝑺
𝑻
(d)

𝑺
𝑻

(e)

𝑺
𝑻

(f)

Figure 5: Capture minimum area cost in path search. Suppose

theminimumarea implies a length of three pitches. A path from

source S to sink T is needed. (a) A normal path search without

considering minimum-area violation. (b) Post fixing by extend-

ing wire. (c) Forcing the minimum length of wire segment in

path search. (d) Detour due to the forcing. (e) & (f) Path search

with wire extension considered.

violations). Recall from Fig. 2 that our local grid graph is sparse because

of the routing guide and long edges, which enhances the efficiency of

our maze routing. We follow the convention of sequential maze routing.

Essentially, nets are routed one after another, where previously routed

nets are treated as blockages. After routing all nets with possible vio-

lations, several rounds of rip-up and reroute (RRR) help to clean them

up.

4.1 Edge Cost in Local Grid Graph

The cost w(e) of each edge e in the local grid graph G(V ,E,w) is a

weighted sum of the (i) basic wire cost (by length), (ii) basic via cost (by

count), (iii) out-of-guide penalty, and (iv) short/spacing violation penalty.

In this way, a path search (like Dijkstra’s algorithm [21]) running on

the grid graph will optimize these objectives automatically. The basic

via/wire cost together with the short/spacing violation penalties are

queried from the sparse global grid graph in batch.

Note that it is not determined by a single edge whether the minimum-

area rule is violated or not. The minimum-area violation thus cannot be

reflected as expensive edges like short/spacing violations and can only

be captured by the path search algorithm.

4.2 Minimum-Area-Captured Path Search

For wires with a specific width, a minimum area implies a minimum-

length constraint lmin . A straight-forward idea for fixing the violation

after maze routing is to extend the wire segments that are not long

enough. Such a greedy method may suffer from excessive wire length

(e.g., Fig. (b) compared with Fig. (c)) and even insufficient spare space

for extension. Another method, multi-label path search [11], forces

the minimum length for every wire segment without considering the

possibility of extension. In this way, significant but unnecessary detour

may be paid (Fig. (d)). By capturing the minimum-area violation and its

possible fixing during the path search, a better solution can be obtained

(Fig. (e)).

We extend the conventional Dijkstra’s algorithm [21] to compre-

hensively handle the minimum-area rule. In Dijkstra’s algorithm, the

cost/distance of a path can be directly incremented. That is, the cost of
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Algorithm 1 Optimal Minimum-Area-Captured Path Search

Require: A local grid graphG(V , E, w ), source and sink vertices s and t , mini-

mum length lmin of wire segment (implied by the minimum-area constraint).

Ensure: s − t path P .

1: Q ← an empty priority queue for storing paths

2: v .costU B ←∞, ∀v ∈ V

3: Initialize path P ′ at s (P ′.pref ix ← null , P ′.ver tex ← s , P ′.costLB ←

0, P ′.costU B ← 0, P ′.lenдth ← lmin )

4: Push P ′ into Q

5: while Q is not empty do

6: Pop the path P ′ with smallest P ′.costLB from Q

7: if P ′.ver tex = t then

8: return P ′

9: for v ∈ P ′.ver tex .neiдhbors do

10: Relax(P ′, v )

11: function Relax(P ′, v ) ◃ Extend path P ′ to v

12: P ′′.pref ix ← P ′

13: P ′′.ver tex ← v

14: if u .layer , v .layer then

15: P ′′.costLB ← P ′.costU B +w (P ′.ver tex, v)

16: P ′′.lenдth ← 0

17: else

18: P ′′.costLB ← P ′.costLB +w (P ′.ver tex, v)

19: P ′′.lenдth ← P ′.lenдth + dist (P ′.ver tex, v)

20: P ′′.costU B ← P ′′.costLB+

MinAreaOverhead(P ′′.lenдth, v .hasSpace )

21: if P ′′.costLB < v .costU B then

22: Push P ′′ into Q

23: if P ′′.costU B < v .costU B then

24: v .costU B ← P ′′.costU B

a path from vertex v1 via v2 to v3 is simply the sum of the cost of the

two partial paths:

cost(v1  v2  v3) = cost(v1  v2) + cost(v2  v3).

The challenge for considering the minimum area constraint is an un-

certain cost of a partial path, which is unknown until the path turns or

stops. At vertex v2, it is unknown whether a minimum-area overhead

(either wire extension or violation penalty) is needed, which depends on

the future propagation of the path. However, for a path up to a certain

wire segment, bounds on its cost can be calculated as follows.

• Lower bound cost: sum of edge costs plus the minimum-area

overhead on all the previous wire segments.

• Upper bound cost: lower bound cost plus the potential minimum-

area overhead on the current wire segment.

Our path search is detailed by Algorithm 1. The process is still based

on a priority queue Q , but the operation domain is generalized from

vertices to paths, because each vertex may have several candidate paths

now. The information stored for a partial path P ′ includes:

• Prefix path P ′.pre f ix and current vertex P ′.vertex . Note that

such incremental storage requires O(1) memory only for each

propagated path, instead of O(|P ′ |).

• The lower bound P ′.costLB and upper bound P ′.costUB of the

path cost.

• Length of the current wire segment P ′.lenдth. It is needed for

calculating the minimum-area overhead.

The information stored at each vertex v is the smallest upper bound

cost v .costUB among all the paths reaching it.

In each iteration, the path P ′ with the smallest lower bound cost in

the priority queue Q is popped out (line 6). It will be considered for

propagating to the neighbors of P ′.vertex . For an extended path P ′′ to

a neighbor v ∈ P ′.vertex .neiдhbors , satisfying P ′′.costLB < v .costUB

means that P ′′ is a potentially optimal path and should be considered

for further propagation (line 21). If P ′′.costLB ≥ v .costUB, P ′′ can be

pruned. The algorithm stops when a sink vertex is reached (line 7). Note

that for a sink vertex, the pin metal is sufficiently large and thus can

guarantee that P ′.costLB is achievable (i.e., no minimum-area overhead

charged).

The overhead due to the minimum-area rule depends on the length

of the current wire segment P ′′.lenдth, whether vertex v has sufficient

spare space for wire extension (v .hasSpace), and the minimum length

requirement lmin (line 20). To be more specific,

MinAreaOverhead(P ′′.lenдth, v .hasSpace) =




0, if P ′′.lenдth ≥ lmin,

wwire · (lmin − P
′′
.lenдth), if P ′′.lenдth < lmin and v .hasSpace,

wminArea, otherwise,

wherewwire is the unit-length basic cost for wires, andwminArea is the

penalty for each minimum-area violation. Note that the flag v .hasSpace

for all the vertices in the local grid graph can be queried from the

global grid graph in batch. The flags are then stored explicitly in the

direct-address table mentioned in Section 3.3.3.

Theorem 1 states the optimality of Algorithm 1. The proof is similar

to that of the original Dijkstra’s Algorithm (see [22]). Details are omitted

here due to space limit.

Theorem 1. For a given local grid graph G(V ,E,w), Algorithm 1

gives an optimal s − t path P satisfying the minimum length constraint

lmin .

The path search algorithm in MANA [10] also captures the minimum

length constraint in a similar manner. The strengths of our approach

over MANA are two folds. First, our framework allows minimum-area

violations to exist in earlier RRR iterations. The minimum-area penalty

serves as Lagrange multiplier [3] and helps to build a smooth RRR

optimization process. It avoids satisfying minimum-area constraint at

a huge price of sacrificing other metrics (e.g., wire length) in early

iterations but still leads to zero minimum-area violation eventually.

Second, we query the flag v .hasSpace in batch from our global grid

graph, which is more efficient.

For a multiple-pin net, path search starts from a source pin t . When

reaching the first other pin, all vertices on the path are regarded as

source for searching a next pin, until all pins are reached [23].

4.3 Rip-up and Reroute

One round of sequential maze routing usually cannot generate a violation-

free solution for all the nets. Several rounds of rip-up and reroute (RRR)

help to iteratively reduce violations. Our RRR strategy is similar to those

widely used in global routing (e.g., NCTU-GR [9]) with two differences.

First, only nets with violations are ripped up to save runtime, consider-

ing that detailed routing is more time-consuming. Second, for ripped-up

nets, their routing regions will be slightly expanded for attempting a

larger solution space in the next iteration.

5 PARALLELISM

The turn-around time of the detailed routing step can be further short-

ened by routing different nets in parallel. The challenge here is that the

routing regions of different nets may overlap. We design an efficient

bulk synchronous parallel scheme [24]. It routes batches of independent

nets one after another.
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Algorithm 2 Scheduling for Parallel Routing

Require: Nets

Ensure: batchList

1: batchList ← ∅

2: for each net ni do

3: for each batch bj in batchList do

4: if ni has no conflict with bj then ◃ By R-trees

5: Add n into bj
6: Break

7: if ni has not been assigned to any batch then

8: Append a single-net batch with ni to batchList

9: for each batch bj in batchList do

10: Sort nets in bj by decreasing size of routing region.

For nets in the same batch, their routing regions do not overlap. Here

a safety margin is also considered, which captures spacing rules and

possible wire extension for minimum-area compliance. There are two

phases for each batch. The routing phase queries nets from the global

grid graph, constructs the local grid graphs, and runs maze routing;

the committing phase records routed edges into the global grid graph

(see Fig. 2), which can be regarded as a data synchronization needed

by later batches. The parallelism for the independent jobs in either

routing or committing phase is trivial: each thread keeps consuming

a net from a pool of unprocessed nets until the pool becomes empty.

With runtime dominated by the routing phase, the reason for having a

separate committing phase is to avoid a heavy usage of mutual exclusion

(mutex) [25] among threads. Routed edges in the global grid graph are

stored by BSTs. A BST cannot be accessed when it is being modified

by another thread, even if the ranges of access and modification do not

overlap. One solution is to set up locks. Its drawback is that reading

BSTs is significantly more frequent than writing. Note that for a net,

reading BSTs is performed on its routing region, while writing is only

performed for the solution paths, which comprise just a small part of

the whole routing region. By separating the committing phase, the BST

reads in the routing phase become lock-free and thus can be performed

faster.

A scheduling of all the batches will be performed in the beginning

of a RRR iteration by Algorithm 2. Nets are assigned one after another

by trying to join an existing batch (lines 3ś6) and thus minimizing the

number of batches. R-trees [26] are used to detect the conflict between

a net and a candidate batch. For a batch of nets, there are several R-trees

storing their rectangular routing regions, one for each layer. In this way,

the scheduling is very efficient and empirically only takes 0.6ś1.4% of

the total running time. Fig. 6(a) shows the runtime profile of all the

batches on a test case. Note that in a batch, different threads may finish

their last jobs at different time and thus has various durations. The

maximum duration of all the threads is the time that a batch needs,

while the average duration is the runtime lower bound that can be

achieved by an ideal scheduling. Their small difference shown in Fig. 6

justifies the good quality of our scheduling. Moreover, the workload of

different threads in a batch can be more balanced by processing larger

nets first (lines 9ś10). Improvement is further evidenced by the smaller

gaps between the maximum and the average durations of the batches

in Fig. 6(b).

6 EXPERIMENTAL RESULTS

Our detailed router is implemented in C++ with the boost geometry

library [27] for R-tree query. Experiments are performed on a 64-bit

Linux workstation with Intel Xeon 3.4 GHz CPU and 32 GB memory.

Benchmarks are from ISPD 2016 Initial Detailed Routing Contest [2],
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Figure 6: Better parallelism by load balancing. The result is on

case ispd18_test9 with 178,857 nets and 349 batches across

three RRR iterations.
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Figure 7: Speed-up by parallelism.

where the largest case ispd18_test10 has 290,386 standard cells

and 182,000 nets. Consistent with the contest, eight threads are used by

default. The result reporting is conducted by Cadence Innovus.

The acceleration achieved by our parallelism is shown in Fig. 7. Eight

threads give almost four times speed-up, where the load balancing

contributes 2.52% improvement on average.
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Table 1: Result Comparison with the First Place of ISPD 2018 Contest

WL # vias
Non-preferred usage Design rule violations

Quality
score

Mem
(GB)

Time
(s)

Out-of-guide Off-track Wrong-way
WL

Short
area

#
spacing

# min
areaWL # vias WL # vias

Metric weight 0.5 2 1 1 0.5 1 1 500 500 500 - - -

D
r.
C
U

test1 434914 34443 4352 859 276 0 2363 15 122 0 362725 0.32 17
test2 7817285 339055 104720 11784 4353 0 22023 1330 1949 0 6366886 1.15 121
test3 8707641 331958 176736 10731 4344 0 22187 1982 2419 0 7430092 1.25 139
test4 26042785 701994 769265 31444 41791 0 89537 26329 11224 0 34112928 2.89 494
test5 27852167 942588 649224 43071 13390 0 63397 4722 7742 0 22805761 3.87 767
test6 35813473 1446807 976672 68656 20357 0 95811 12891 11023 0 33908653 5.16 1155
test7 65360688 2349580 2187794 101866 33105 0 170316 33041 14880 0 63816462 8.86 2071
test8 65668468 2360231 2288159 102982 33373 0 170583 22353 14384 0 58501486 8.92 2060
test9 54993356 2358857 1604576 115465 29620 0 168722 17316 14470 0 50010785 8.52 2016
test10 68282001 2532666 2826908 140343 32865 0 180586 150705 20837 0 128141527 8.98 2132
Avg. ratio 1.00 1.00 1.00 1.00 1.00 - 1.00 1.00 1.00 - 1.00 1.00 1.00

1
st

p
la
ce

o
f
IS
P
D
2
0
1
8

test1 472032 41641 6246 1385 3528 116 3509 1 107 0 386188 4.64 207
test2 8150588 409551 71685 13451 20402 1362 18214 95 1158 1 5636274 32.55 1514
test3 9086139 427410 69182 2450 33470 1216 18882 4891 1387 0 8645534 43.40 2019
test4 27514053 858224 240226 8841 150961 1011 224715 52947 50957 6 67978777 46.52 4706
test5 29151781 1140804 309785 30902 45523 10656 193203 28199 66250 22 64660336 24.25 1914
test6 37987679 1775407 467961 42448 153900 17644 281060 30949 100229 12 89025895 28.40 3107
test7 fail fail fail fail fail fail fail fail fail fail fail fail fail
test8 69559382 2929578 1006247 82478 375236 22294 455824 76790 161229 48 161426598 41.81 6262
test9 58803453 2920259 813750 67367 331766 22915 446432 56581 158305 40 144221466 40.16 5128
test10 72244024 3110163 1414338 81831 625291 27392 476670 120966 177426 33 193867714 45.15 5554
Avg. ratio 1.06 1.23 0.58 0.73 9.02 - 2.18 2.28 6.10 - 1.97 13.27 6.89

We also compare our results with the first place in ISPD 2018 Contest

(TABLE 1)2. Regarding the routing quality, our router show significantly

better scores in many aspects (including wire length, via count, design

rule violations, off-track and wrong-way usage) in most cases. In ISPD

2018 Contest, the total quality score is a weighted sum of different

metrics (weights are shown in TABLE 1). According to this metric, our

routing quality wins the first place in nine out of ten test cases (35%

better on average with their failed case excluded). At the same time, our

router takes 80ś93% less memory, and has 2.5ś15× speed-up.

7 CONCLUSION

In this paper, we propose an efficient and effective detailed router to

tackle the challenges in detailed routing. A set of two-level sparse data

structures is designed for the routing grid graph of enormous size. An

optimal path search algorithm is proposed to handle the minimum-area

constraint. Besides, an efficient bulk synchronous parallel scheme is

adopted to further reduce the runtime usage. Compared with the first

place of ISPD 2018 Contest, our router shows superior routing quality,

runtime, and memory usage.
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