
An Analytical Approach for Time-Division Multiplexing
Optimization in Multi-FPGA based Systems

Chak-Wa Pui

CUHK

cwpui@cse.cuhk.edu.hk

Gang Wu

Synopsys Inc.

gangw@synopsys.com

Freddy Y. C. Mang

Synopsys Inc.

fmang@synopsys.com

Evangeline F. Y. Young

CUHK

fyyoung@cse.cuhk.edu.hk

ABSTRACT
To increase the utilization of FPGAs in multi-FPGA based systems,

time-division multiplexing (TDM) is a widely used technique to

accommodate a large number of inter-FPGA signals. However, with

this technique, the delay imposed by the inter-FPGA connections

becomes significant. Previous research shows that TDM ratio of

signals can greatly affect the performance of a system. In this paper,

we extend previous problem formulation to meet more general con-

straints in multi-FPGA based systems and propose a novel approach

to solve it. In particular, to optimize system clock period effectively

and efficiently, we propose a two-step analytical framework, which

first gives a continuous result using a non-linear conjugate gradient-

based method and then finalizes the result optimally by a dynamic

programming-based discretization algorithm. For comparison, we

also solve the problem using an integer linear programming (ILP)-

based method. Experimental results show that our approach can

improve the system clock period by about 7% on top of a well op-

timized inter-FPGA routing result. Moreover, our approach scales

for designs over 400K nodes while ILP-based method is not able to

finish for designs with 2K nodes.

1 INTRODUCTION
In recent years, field-programmable gate array (FPGA) becomes

very popular in various fields such as deep learning [10] and data

center [3] due to its increasing logic density. Although the scale

of FPGAs has greatly increased, it is still unlikely to fit the entire

design into one FPGA in applications like logic emulation and rapid

prototyping of large designs [4]. Hence, multi-FPGA systems are

usually used. A multi-FPGA system consists of multiple FPGAs

which are connected using direct hardwired connections or a pro-

grammable interconnection network that may consist one or more

field-programmable interconnect chips [9].

In multi-FPGA systems, the available pin count of the FPGAs

is relatively small compared to the number of inter-FPGA signals,

which greatly limits the utilization of the FPGA logic resources in a

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SLIP ’19, June 2, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

multi-FPGA system. Time-division multiplexing (TDM) is a method

that multiplexes the use of FPGA pins and inter-FPGA physical

wires among multiple inter-FPGA signals. Since TDM can reduce

the number of physical wires needed, it is commonly adopted in

multi-FPGA systems [1]. In this way, the number of logical pins

available in each FPGA can be effectively increased, which leads

to higher logic utilization per FPGA. But this technique makes the

system clock period longer since the inter-FPGA signal delay is

lengthened due to time-multiplexing. Although minimizing the

number of inter-FPGA signals during compilation can reduce the

negative effect of time-multiplexing on delay, TDM optimization is

still an important step in the compilation flow since different TDM

ratios can result in very different system clock period [5].

In the compilation flow of multi-FPGA systems, TDM ratios are

usually determined after inter-FPGA routing [1]. Several methods

are proposed to optimize the TDM ratios in recent works [6–8].

In [8], an integer linear programming (ILP)-based method for 2-

FPGA systems is introduced. TDM ratio and TDM path length are

minimized in the formulation, where both resources and signal di-

rections are considered. It tries to put non-critical inter-FPGA nets

in TDM wires to improve the utilization and timing of the systems,

which results in a 0-1 decision problem for each net. The ILP prob-

lem is divided into sub-problems and solved by integer relaxation.

We can see that there are only two choices for their nets, which are

time-multiplexed or not. Hence, the resulting TDM ratios between

two FPGAswill only have two values, which is not practical inmulti-

FPGA systems [5]. The work [7] extends [8] to support multi-FPGA

systems. It is further extended to consider TDM optimization in

partially connected multi-FPGA systems [6]. Due to the increasing

number of inter-FPGA signals in multi-FPGA systems, ILP-based

methods are no longer able to produce high-quality results with

scalable running time. A recent work [2] proposes a framework

that performs TDM assignment and partitioning simultaneously.

During partitioning, the weight of each edge is modified to model

the delay induced by TDM. For signal grouping, a binary search

based method is used to exhaust all the possible groupings. How-

ever, the system clock period is only used as the final performance

metric, which is optimized by minimizing an estimated timing crit-

icality cost. Moreover, their TDM ratios can be arbitrary integers,

which is not practical [5]. Therefore, a high-quality, scalable TDM

optimization algorithm for multi-FPGA systems is needed.

In this paper, we propose an analytical framework for the TDM

optimization problem. The major contributions are summarized as

follows:

• An analytical framework is proposed to optimize the system

clock period globally in the multi-FPGA TDM optimization

problem. It first generates a continuous result of the TDM

ratios with minimized system clock period under relaxed

constraints. A discretization algorithm is then applied to re-

move all the constraint violations honoring the continuous

result. Compared to previous works, our approach supports

wires with a user given set of TDM ratios, which is more

practical in multi-FPGA systems. To the best of our knowl-

edge, this is the first work that directly optimizes the system

clock period in a practical and effective way.

• Anon-linear conjugate gradient (CG)-based continuous solver

is proposed to solve the continuous TDM optimization prob-

lem which is effective and scalable. Several techniques are

proposed to optimize the system clock period and the num-

ber of TDM ratio violations.

• A top-down dynamic programming (DP)-based algorithm is

proposed to discretize the continuous TDM result, which can

optimize the timing and total displacement exactly. Various

pruning techniques are proposed to accelerate the process.

The remainder of this paper is organized as follows. Section 2

gives the preliminaries of the problem. Section 3 first gives an

overview of our approach and then introduces its details. Section 4

shows the experimental results, and we finally conclude this paper

in Section 5.

2 PRELIMINARIES
In this section, we first explain our targeting architecture and its

compilation flow. The problem definition will then be introduced.

Note that, throughout this paper, tdmNet refers to inter-FPGA net

for simplicity and the notations we used are shown in Table 1.

2.1 Targeting Architecture
We consider a multi-FPGA system with multiplexed hardwired

inter-FPGA connections where two FPGAs are adjacent if they

are directly connected in the system. In our targeting system, two

adjacent FPGAs are called an FPGA-pair.

Since the number of tdmNets is much larger than the number of

physical wires between FPGAs, time-multiplexed wires are usually

used to connect different FPGAs. Figure 1 is an illustration of the

inter-FPGA time multiplexed I/Os in our targeting architecture. In

such systems, only the tdmNets in the same direction and with the

same TDM ratio can be assigned to the same wire. Moreover, the

number of tdmNets in the wire with TDM ratio n should be no

greater than n. In our target architecture, I/O TDM implementation

uses an order-agnostic approach, whose scheduling assumes the

same worst-case delay for all signals. Thus, the transmission de-

lay is a function that only depends on the TDM ratio. Given the

tdmNet neti going through a wire with TDM ratio xi , the delay of

ep,q can be calculated as (bp,q · xi + cp,q) for all ep,q ∈ Ei , where
bp,q , cp,q are parameters related to the time multiplexing architec-

ture. Due to the architecture limitations, the TDM ratio can only

be 1 or multiples of 8 instead of an arbitrary integer.

Table 1: Notations

T The set of all FPGA-pairs.

ti The set of tdmNets of the FPGA-pair i in T .

pi Wire limit of the FPGA-pair i in T .

д
sink

Sink of the timing graph.

дi Gate i .

ep,q Edge from дp to дq in timing graph.

atp , rtp Arrival time and required arrival time of дp .

X An assignment of the TDM ratios of the system.

Ei The set of edges correspond to tdmNet neti .

xi TDM ratio of tdmNet neti .

xp,q TDM ratio of ep,q and xp,q = xi for all ep,q ∈ Ei .

bp,q , cp,q Architecture related parameters of ep,q .

tc The set of all discrete TDM choices, which are

{1, 8, 16, 24, . . . , 1600}.

delayp,q Delay of ep,q .

ecp,q (exp,q) An edge from дp to дq representing an intra-FPGA

(inter-FPGA) net.

x
tc j
i Binary variable indicates whether tdmNet neti is

assigned to discrete TDM choice tc j .

n
f
k,tc j

(nbk,tc j
) Integer variable indicates the number of forward

(backward) wires used in the FPGA-pair k , whose
TDM ratios are tc j .

t
f
k (tbk) The set of forward (backward) tdmNets of the

FPGA-pair k in T .

FPGA A FPGA B

TDM Clock

TDM Clock

Register

MUX

Instance

Signal

Figure 1: An illustration of inter-FPGA time-multiplexed
I/Os where three different signals share one wire.

2.2 Compilation Flow
A typical compilation flow for multi-FPGA systems consists of

various steps, such as partitioning, placement, routing, etc. The

first step of the compilation flow is logic synthesis and technology

mapping where the given circuit is mapped into a netlist of primi-

tive elements such as lookup-tables (LUTs), flip-flops (FFs), RAMs,

DSPs, etc. The netlist is then divided into partitions such that each

partition can fit into a single FPGA and the number of inter-FPGA

connections is minimized. Inter-FPGA placement puts each parti-

tion into a distinct FPGA on the board. Inter-FPGA routing is then

performed which considers both system performance and routing

resources. It determines the routing topology and the TDM ratio for

each tdmNet. It must ensure that the number of tdmNets between

any two adjacent FPGAs will not require more physical wires than

available under their TDM specification. Given the routing result,

FPGA BFPGA A

wire tdmNet

𝑥1
𝑥2
𝑥3

16
8
8

16 + 𝑥1
8 + 𝑥2
8 + 𝑥3

Figure 2: An example of TDM optimization problem.

TDM optimization is applied to optimize the TDM ratios regarding

the system clock period. After that, pin assignment will choose the

physical wire and pins for each tdmNet subject to the TDM con-

straints from the previous steps. Finally, the placement and routing

of individual FPGAs are performed.

2.3 Problem Definition
TDM ratio represents the maximum number of signals that a physi-

cal wire can accommodate. In the TDM optimization problem, given

the system architecture and the timing graph constructed from the

inter-FPGA routing result, we need to determine the TDM ratio for

each tdmNet. The objective is to minimize the system clock period,

which equals to the arrival time of the sink in the timing graph.

The TDM ratios of the tdmNets in the FPGA-pair i should satisfy

the following constraints.

• Each TDM ratio should be either 1 or multiples of 8.

• Only tdmNets with the same TDM ratio and in the same

direction can be assigned to the same wire.

• The number of tdmNets in a wire with TDM ratio n is no

greater than n.
• The total number of used wires cannot exceed pi .

An example of the TDM optimization problem is shown in Fig-

ure 2 where all cp,q and bp,q are assumed to be 0 and 1 respec-

tively. There are two wires between the FPGA-pair and three sub-

nets from FPGA A to B. Let the TDM ratios for these three sub-

nets be x1,x2,x3 and the arrival times of their driving pins are

16, 8, 8 respectively. The system clock period is the maximum ar-

rival time at the primary outputs of FPGA B which is at
sink
=

max(16+ x1, 8+ x2, 8+ x3). The optimal assignment of TDM ratios

of this system will be (x1,x2,x3) = (1, 8, 8) so that tdmNets net2
and net3 can share one physical wire and ⌈ 1x1 ⌉ + ⌈

1

x2 +
1

x3 ⌉ ≤ 2.

3 TDM OPTIMIZATION FRAMEWORK
As shown in Figure 3, our TDM optimization algorithm is a two-step

approach. Given an inter-FPGA routing result, the corresponding

timing graph is first constructed. Our continuous solver is then

built based on the timing graph, which minimizes the system clock

period with most of the TDM constraints ignored. To be specific,

each TDM ratio should not be less than 1 and

∑
j ∈ti

1

x j ≤ pi holds

for every FPGA-pair.

After that, we can get a continuous result of the TDM ratios

with optimized system clock period. Our discretization algorithm is

then performed such that all the TDM ratio violations are removed

while the continuous result is honored.

Details of our continuous solver and discretization algorithm

will be discussed in Sections 3.1 and 3.2 respectively.

CG solver

Adjust
weights

Time limit
or

converge

Discretization

yes

no

Continuous solver

Inter-FPGA
routing solution

TDM optimization
result

Figure 3: The overall flow of our approach.

3.1 Continuous Solver
Our continuous solver is an iterative solver based on an uncon-

strained non-linear CGmethod. At each iteration, the CG solver will

optimize the objective and the parameters are adjusted accordingly.

The solver will terminate after the result converges adequately or

the time limit is reached.

Instead of formulating it as a constrained optimization problem,

our formulation is shown as follows,

min α · f (X) +
∑
i ∈T

βi · дi (X) +
∑
i ∈T

∑
j ∈ti

γj · h(x j) (1a)

s .t . дi (X) = max((
∑
j ∈ti

1

x j
) − pi , 0) (1b)

h(x) = max(1 − x , 0), (1c)

where α , βi ,γj are weights, f is the system clock period, дi and
h represent the violations of wire limit constraint and minimum

TDM ratio value constraint respectively. Note that, Equation (1) is a

convex non-differentiable function since f ,h,д are all convex and

α , β ,γ are non-negative values.

3.1.1 Objective Approximation. This section shows how the objec-

tive function (Equation (1)) is smoothened in the CG solver.

f (X) is the system clock period which is calculated as,

f (X) = max

ep,sink
(atp + delayp,sink).

Log-Sum-Exp (LSE) function is used to smoothen the max function

in forward timing propagation. To avoid overflow, LSE is trans-

formed as shown in Equation (2),

k
max

i=0
yi ≈ log

k∑
i=0

eyi =
k

max

i=0
yi + log

k∑
i=0

eyi−max
k
i=0 yi . (2)

Since the exponential function is frequently used in timing prop-

agation and gradient calculation, a fast look-up table (LUT) and

approximation are adopted as shown in Equation (3).

ex ≈

(1 + x

256
)256, if 0 ≤ x < 1,

return e ⌊x ⌋ from LUT, if 1 ≤ x ≤ 200,

+∞, if x > 200,

(3)

where a look-up table from e1 to e200 is pre-built. Note that, with
this approximation, the runtime for computing ex can be greatly

reduced while the percent error for 0 ≤ x < 1 is below 0.2% and

the error for x ≥ 1 is either negligible or irrelevant for the problem.

For д and h, two piecewise functions are used to replace them as

shown in Equations (4) and (5), which are still smooth and convex.

д
p
i (X) =

{
((
∑
j ∈ti

1

x j) − pi)
2, if

∑
j ∈ti

1

x j > pi ,

0, otherwise.

(4)

hp (x) =

{
(1 − x)2, if x < 1,

0, otherwise.

(5)

3.1.2 Gradient Calculation. Our objective consists of three parts
f p , дp and hp , which are the approximated functions of f , д and h
respectively. The gradients of дp and hp can be easily calculated.

On the other hand, f p is a function based on the timing graph

whose gradient cannot be directly calculated. In our approach, we

use backpropagation to obtain the gradient by transforming the

timing graph into a computational graph. Given the assignment

of the TDM ratios, forward timing propagation is first performed

to get the arrival time of each gate. We then calculate the local

gradients for each gate with respect to its incoming nodes in the

computational graph. Finally, we do backpropagation which applies

chain rule to compute the derivatives. It is easy to see that the local

gradient calculation of each gate node can be parallelized and the

backward and forward propagation can be parallelized among the

nodes at the same level in the topological order.

3.1.3 Weight Adjustment. In each iteration, we can get an opti-

mized result of X regarding the objective after solving the non-

linear CG problem. From this result, the coefficients α , β ,γ are

adjusted accordingly to balance the cost of f p ,дp ,hp in the ob-

jective. To be specific, we will calculate the violation using Equa-

tions (1b) and (1c). If дi (X) is larger than 0 for the FPGA-pair i ,
we will double βi such that the corresponding violation is given

more penalty. Similarly, if the value of xi is less than one, γi will be
doubled.

Since f p and дp are meaningless if any xi in the equation is

less than one, the minimum TDM ratio value constraint is treated

as a barrier constraint in our solver, which means that γ is set to

a large value from the beginning of the iterations. Even with the

barrier constraint, it is still possible that the CG solver explores

places where xi < 1. Hence, xi in f p and дp is substituted by

max(1,xi) ≈
log(e10+e10xi)

10
.

Unlike quadratic CG where the step size of each iteration can

be calculated precisely, the step size in non-linear CG is obtained

by a line search algorithm[13]. At each CG iteration, given the

direction of the current point X , the line search algorithm will try

to approximate the objective as a quadratic function and pick the

step size which minimizes the approximated function. For example,

in Figure 4(a), line search is performed at x = 7, it approximates the

function (blue solid line) as a quadratic function (red dashed line).

The minimum point of the approximate function is x = 4.5, hence

the step size calculated by line search is 2.5 in this iteration. Figure 4

shows two different settings of α , β where both of them start from

the point x = 7, the one with larger β results in a steeper curve (blue

solid line) and is trapped in the local optimal (x = 7) while the one

3 4 5 6 7 8 9 10

0

5

10

15

(a) large β
3 4 5 6 7 8 9 10

0

5

10

15

(b) small β

Figure 4: A one-dimensional example of how different α , β
settings behave in line search. Green and blue solid lines are
the curves of the objective function. Red dashed line is the
curve of the approximated quadratic function at x = 7.

with smaller β (green solid line) can descend further to a smaller

value. Hence, if α is set to a value such that

∑
i ∈T βi ·д

p
i (X) is large

comparing with α · f (X), it is easy to get trapped in a local optimal

point since the minimum value found by line search may easily be

greater than the current value. Based on this knowledge and the

experimental results, we set α to a value such that

∑
i ∈T βi · д

p
i (X)

is small compared to α · f (X), which will lead to faster convergence

speed.

3.2 Discretization
Our discretization algorithms are based on a top-down DP frame-

work. We consider two different objectives, the total displacement

from the continuous solution and timing. In our DP formulation,

each FPGA-pair is independent and hence they can be discretized in

parallel. Details of the algorithm for each FPGA-pair are shown in

Sections 3.2.1 and 3.2.2. Note that, in our discretization algorithms,

the discrete TDM choices are traversed in ascending order. For

simplicity, we only discuss circumstances where the tdmNets of

the same FPGA-pair are all in the same direction. The algorithms

can be easily extended to support two directions.

3.2.1 Displacement-Driven Discretization. Since the continuous

solver optimizes the TDM ratios in a global view, its results should

be honored during discretization. Hence, minimizing the total dis-

placement is one reasonable objective for discretization. The prob-

lem formulation of the FPGA-pair A is shown in Equation (6).

min

∑
k ∈tA

|xcontk − xdiscrk | (6a)

s .t . All TDM ratio constraints are satisfied. (6b)

As shown in Algorithm 1, a top-down DP framework is ap-

plied. The sequence is first sorted in a non-decreasing order of

their continuous TDM ratios. getMinPA
DISP
(i,pp) will then gen-

erate the optimal TDM ratios for the ith to nth tdmNets in the

sequence using pp wires. Finally, the TDM ratio of each tdmNet is

restored. In the following, we show an example of how to compute

getMinPA
DISP

. Given three discrete TDM choices (1, 8 and 16),

getMinPA
DISP
(i,pp) is equal to theminimumof cost1, cost8, cost16,

Algorithm 1 Displacement-Driven Discretization.

Input: The continuous TDM ratios of the FPGA-pair A.
Output: A legal assignment of TDM ratios of the FPGA-pair A.
1: sort the tdmNets in the tA in non-decreasing order of their

continuous solutions, let x[k] be the TDM ratio of the kth

tdmNet in the sorted sequence;

2: getMinPADISP(0,pA);
3: restore the best solutions from the DP;

4: function getMinPADISP(i,pp)
5: return the best cost at (i,pp) if computed already;

6: return 0 if i ≥ |tA |;

7: return +∞ if ⌈
|tA |−i
1600
⌉ > pp;

8: prevIdx ← 0;

9: for each tcq ∈ tc no less than nearestTDM(x[i]) do
10: minIdx ← prevIdx + 1;
11: increaseminIdx as long asminIdx + 1 < tcq and tcq

equals nearestTDM(x[i +minIdx + 1]);
12: increase prevIdx as long as prevIdx + 1 < tcq and

x[prevIdx + i + 1] ≤ tcq ;
13: curBest ← +∞;
14: for j ∈ ranдe(i +minIdx , i + tcq − 1) do
15: curDisp ←

∑j
k=i |x[k] − tcq |;

16: jump to line 9 if curDisp ≥ curBest ;
17: cost ← curDisp + getMinPADISP(j + 1,pp − 1);
18: curBest ← min(cost , curBest);
19: update the best solution at (i,pp) if cost is less than

the best cost at (i,pp);
20: end for
21: end for
22: return the best cost at (i,pp);
23: end function

which are computed as below,

cost1 = getMinPADISP(i + 1,pp − 1) + |x[i] − 1|,

cost8 = min

0≤j<8
(getMinPA

DISP
(i + j + 1,pp − 1) +

i+j∑
k=i

|x[k] − 8|),

cost16 = min

0≤j<16
(getMinPA

DISP
(i + j + 1,pp − 1) +

i+j∑
k=i

|x[k] − 16|).

Note that for cost8 and cost16, the minimum among 0 ≤ j < 8 and

0 ≤ j < 16 are considered because we can assign 1 to 8 and 1 to 16

tdmNets respectively to the ppth wire.

Some pruning techniques are applied to accelerate the process

without changing the optimality. As shown on line 9, we skip the

discrete TDM choices smaller than the nearest one of x[i] (ob-
tained by nearestTDM) because smaller choices will induce more

displacement and use more wire resources.minIdx and prevIdx de-

note the minimum numbers of tdmNets in the ppth wire under the

current and next discrete TDM choice respectively. On line 11, we

increaseminIdx as long as tcq is the nearest discrete TDM choice of

x[i +minIdx + 1] because smallerminIdx will increase the number

of wires used without reducing the total displacement. On line 12,

we increase prevIdx as long as x[i + prevIdx + 1] ≤ tcq . It will be

𝑥𝑎
𝑐x1 𝑥𝑏

𝑐𝑥𝑚 𝑥2 TDM factor

Displacement

Old TDM
assignment

New TDM
assignment

Increased
displacement

Decreased
displacement

Displacement
function of 𝑥1

Displacement
function of 𝑥2

𝑥𝑎
𝑐x1 𝑥𝑏

𝑐 𝑥𝑚 𝑥2 TDM factor

Displacement

Figure 5: An illustration of swapping the TDM ratios of two
tdmNets.

the starting value ofminIdx for the next discrete TDM choice tcq+1

since

∑j
k=i |x[k] − tcq | <

∑j
k=i |x[k] − tcq+1 | holds for any j no

greater than i + prevIdx . On line 16, the loop ends since a larger j

will only increase the total displacement (curDisp) of the ppth wire

which is already larger than the best cost (curBest) of the current
discrete TDM choice tcq .

Given a tdmNet neta , let its TDM ratios before and after dis-

cretization be xca and xda respectively. Theorem 1 proves that Algo-

rithm 1 can obtain the optimal solution for the problem shown in

Equation (6).

Lemma 1. Given a solution of Equation (6) where xca < xcb and
xda > xdb , we can swap their TDM ratios without increasing the cost
of the solution.

Proof. There are three cases: (1) xdb < xda < xca , (2) x
c
b < xdb <

xda and (3) xdb < xca < xda or xdb < xcb < xda . The difference before

and after swapping is d = |xca −x
d
a |+ |x

c
b −x

d
b | − |x

c
a −x

d
b | − |x

c
b −x

d
a |.

For case 1, d = (xca − x
d
a) + (x

c
b − x

d
b) − (x

c
a − x

d
b) − (x

c
b − x

d
a) = 0.

For case 2, d = (xda − x
c
a) + (x

d
b − x

c
b) − (x

d
a − x

c
b) − (x

d
b − x

c
a) = 0.

Hence, swapping will not change the cost in the first two cases.

An illustration of case 3 is given in Figure 5. We can see that if xca
and xcb are on different sides of xm where |xm − x

d
b | = |xm − x

d
a |,

both of their displacement will be reduced after swapping. If they

are on the same side of xm , the total displacement is also reduced.

Hence, if xca < xcb and xda > xdb , swapping their TDM ratios will

not increase the cost of the solution. □

Corollary 1. Given an optimal solution of Equation (6) where no
swapping as described in Lemma 1 can be performed, it is true that
xda ≤ xdb if xca ≤ xcb .

Theorem 1. Algorithm 1 can get the optimal solution of Equation (6).

Proof. We can see that Algorithm 1 exhausts all possible ways

of partitioning the given non-decreasing sequence of continuous

TDM ratios and returns the best partition in minimizing the total

displacement. However, the optimality of Algorithm 1 (on the prob-

lem shown in Equation (6)) depends on whether there exists an

optimal solution of the problem that can be transformed into a par-

titioning of a non-decreasing sequence of the tdmNets’ continuous

TDM values.

Given an optimal solution of Equation (6) where no swapping

as described in Lemma 1 can be performed, we can first sort the

sequence in a non-decreasing order of their discrete TDM ratios.

According to Corollary 1, it is true that for all pairs a and b, if

xda ≤ xdb , then xca ≤ xcb . For tdmNets that have the same discrete

TDM ratios, they can also be sorted in a non-decreasing order of

their continuous TDM ratios without changing the objective value.

In this way, we can get a partitioning of a non-decreasing sequence

of the tdmNets’ continuous TDM ratios while the objective value

is still optimal. □

3.2.2 Timing-Driven Discretization. Slack ratio (Equation (7)) is a

metric to measure the timing criticality of a tdmNet in the netlist.

slack_ratiop,q = 1 +
atp + bp,q · xp,q + cp,q − rtq

atsink
,∀ep,q . (7)

In our timing-driven discretization, the TDM ratio assignment is

legalized according to the slack ratio of the continuous result. The

problem formulation of the FPGA-pair A is shown in Equation (8).

The arrival time is calculated given the continuous result and is

fixed during the optimization. In our targeting designs, bp,q of each

edge ep,q is the same among all the tdmNets.

min max

i ∈tA
(Ki + Bi · xi) (8a)

s .t . Ki = max

ep,q ∈Ei

atp + atsink − rtq + cp,q

at
sink

,∀i ∈ tA (8b)

Bi = max

ep,q ∈Ei

bp,q

at
sink

,∀i ∈ tA (8c)

All TDM ratio constraints are satisfied. (8d)

Details of our algorithm are shown in Algorithm 2, where a

top-down DP framework is applied. Bi and Ki for each tdmNet

are first calculated according to the continuous result as shown

in Equations (8c) and (8b). The input sequence is then sorted in a

non-increasing order of their Ks. Note that, a larger K indicates

that a tdmNet is more timing critical since it is the constant part

of the slack ratio as shown in Equation (8). getMinPASR(i,pp)
will generate the optimal TDM ratios for the ith to nth tdmNets

in the sequence using pp wires. Note that, in our algorithm, we

will use the resources of each wire as much as possible. Finally,

the TDM ratio of each tdmNet is restored. In the following, we

show an example of how to compute getMinPA
SR
. Given three

discrete TDM choices (1, 8 and 16), getMinPA
SR
(i,pp) is equal to

the minimum of cost1, cost8, cost16, which are computed as below,

cost1 = max(K[i] + 1 · B[i],getMinPA
SR
(i + 1,pp − 1)),

cost8 = max(K[i] + 8 · B[i],getMinPA
SR
(i + 8,pp − 1)),

cost16 = max(K[i] + 16 · B[i],getMinPA
SR
(i + 16,pp − 1)).

Algorithm 2 Timing-Driven Discretization.

Input: The continuous TDM ratios of the FPGA-pair A.
Output: A legal assignment of TDM ratios of the FPGA-pair A.
1: calculate Ki ,Bi for all i ∈ tA as shown in Equation (8).

2: sort the tdmNets in the tA in non-increasing order of their

Ks, let K[i],B[i] be the K ,B of the ith tdmNet in the sorted

sequence;

3: getMinPASR(0,pA);
4: restore the best solutions from the DP;

5: function getMinPASR(i,pp)
6: return the best cost at (i,pp) if computed already;

7: return 0 if i ≥ |tA |;

8: return +∞ if ⌈
|tA |−i
1600
⌉ > pp;

9: for each tcq ∈ tc do
10: msr ← K[i] + B[i] · tcq ;
11: exit loop ifmsr ≥ bestCost[i][pp];
12: cost ← max(msr ,getMinPASR(i + tcq ,pp − 1);
13: update the best solution at (i,pp) if cost is less than the

best cost at (i,pp);
14: end for
15: return the best cost at (i,pp);
16: end function

As proved in Theorem 2, Algorithm 2 can get the optimal solution

of the problem shown in Equation (8).

Lemma 2. Algorithm 2 can get the optimal partitioning of an input
sequence sorted in a non-increasing order of Ks.

Proof. Similar to Algorithm 1, Algorithm 2 can also be viewed

as a partitioning algorithm of the input sequence. The main dif-

ference is that it assumes the length of each partition is equal to

its TDM ratio except that of the last partition. If this assumption

is true, it is obvious that this algorithm exhausts all possible ways

of partitioning the input sequence and returns the optimal solu-

tion. Next, we will prove that this assumption is true if the given

sequence is in a non-increasing order of their Ks, that is:

F (i + x ,p − 1) ≤ F (i + x − l ,p − 1),

where F denotes getMinPASR and 0 < l < x . Every solution

for F (i + x − l ,p − 1) can be transformed to a solution for F (i +
x ,p − 1) with the same or smaller cost. To be specific, given a TDM

assignment of the (i +x − l)th to nth tdmNets using p − 1 wires, we

can fit the (i + x)th to nth tdmNets into these wires using the same

TDM configuration which will result in the same cost. Therefore,

F (i + x ,p − 1) ≤ F (i + x − l ,p − 1). It means that we should use the

resources of each wire as much as possible. □

Theorem 2. Algorithm 2 can get the optimal solution of Equation (8).

Proof. As shown in Lemma 2, our algorithm is optimal given

a sequence in a non-increasing order of their Ks. However, the
optimality of Algorithm 2 (on the problem shown in Equation (8))

depends on whether there exists an optimal solution of the problem

that can be transformed into a partitioning of a non-increasing

sequence of the tdmNets’ Ks.

Here, we show how an optimal solution is transformed into

such a partitioning. Given an optimal solution of Equation (8), for

two tdmNets neti and netj , if netj is more critical (Ki < Kj) but the

discrete TDM ratio ofnetj is larger than that ofneti (x
d
i < xdj), their

TDM ratios can be swapped without changing the the optimality of

the solution since max(Ki + Bi · x
d
i ,Kj + Bj · x

d
j) ≥ max(Ki + Bi ·

xdj ,Kj + Bj · x
d
i). After all these swappings, we can first sort the

sequence in a non-decreasing order of their discrete TDM ratios.

For tdmNets that have the same discrete TDM ratios, they can also

be sorted in a non-increasing order of their Ks without changing
the objective value. In this way, we can get a partitioning of a non-

increasing sequence of the tdmNets’ Ks while the objective is still
optimal. □

In our implementation, we traverse the discrete TDM choices

of each tdmNet starting from the nearest one of its continuous

solution instead of one (line 9). Even though this will change the

optimality of the result, it may give a better system clock period

because a TDM ratio far from the continuous solution will make the

slack ratio estimation very inaccurate and reduce the correlation

between slack ratio and system clock period.

4 EXPERIMENTAL RESULTS
In this work, all algorithms are implemented in C++ and embedded

into a multi-FPGA system compilation flow. In Section 3.1, we use

WNLIB [12] as our non-linear CG solver. In Section 4.1, GLPK [11]

is used as our ILP solver. The experiments are performed on a Linux

machine with an Intel Xeon CPU with 20 cores (no hyper-thread)

and 248GBmemory. Details of the benchmarks are shown in Table 2,

where the constant edges represent the intra-FPGA connections

and the TDM edges represent the tdmNets. In the followings, we

will first introduce the formulation of our baseline algorithm and

then analyze the performance of our proposed framework.

4.1 Integer Linear Programming Baseline
Since there is no prior work that directly works on the same prob-

lem, an ILP-based method is proposed as our baseline for compar-

ison. The objective and constraints of our ILP are listed in Equa-

tion (9) and the notations are shown in Table 1.

min at
sink

(9a)

s .t .
∑

tc j ∈tc
x
tc j
i = 1,∀i (9b)

ndirk,tc j
≥

∑
i ∈tdirk

x
tc j
i

tc j
,∀k ∈ T ;∀tc j ∈ tc;dir ∈ { f ,b} (9c)∑

tc j ∈tc
nbk,tc j

+ n
f
k,tc j

≤ pk ,∀k ∈ T (9d)

atq ≥ atp + delayp,q ,∀ecp,q (9e)

atq ≥ atp + bp,q ·
∑

tc j ∈tc
x
tc j
p,q · tc j + cp,q ,∀exp,q . (9f)

Equation (9b) ensures that each tdmNet can only have one TDM

ratio. Equations (9c) and (9d) ensure that the total usage of forward

Table 2: Statistics of our designs.

Design #Nodes

#TDM

edges

#Constant

edges

design1 194239 111242 189832

design2 321629 187230 325239

design3 479359 245961 480321

design4 194694 110760 234820

design5 174099 103691 194692

design6 339004 197672 346480

design7 94510 53404 82609

design8 129189 76644 106004

design9 216803 127224 181525

design10 19147 11751 15060

design11 35796 19396 37438

design12 2586 1677 3961

design13 232 96 201

design14 845 326 788

Table 3: Comparison with ILP-based method on the small
designs.

Design

System clock period (ns) Runtime (s)

Inter-FPGA

routing

ILP TM-flow ILP TM-flow

design12 393 N/A 393 >2hrs 17

design13 87 87 87 52 0.1

design14 137 137 137 49.2 0.1

and backward wires of each FPGA-pair is under the wire limit.

Equations (9e) and (9f) are the constraints for timing propagation.

4.2 Results Analysis
Our TDM optimization is performed after inter-FPGA routing

whose result is the starting point of our algorithm. It is worth

mentioning that the inter-FPGA result is from a well-optimized

compilation flow which already selects a TDM ratio for each tdm-

Net while considering timing. It is a relatively good starting point

but our method can still further improve on it. Note that, the con-

tinuous solver is followed by timing-driven discretization in the

TM-flow. On the other hand, in the DISP-flow, the continuous solver

is followed by the displacement-driven discretization.

For small designs, we can obtain the same results as the optimal

ILP-based method with much shorter runtime as shown in Table 3.

Moreover, the ILP-based method reaches the time limit (2 hours) in

a slightly larger design, which shows that the ILP-based method

is not scalable in this extended formulation where wires in the

same FPGA-pairs can have different TDM ratios. Note that, in our

targeting architecture, given 201 discrete TDM choices, the number

of x
tc j
i for each tdmNet is 201. Hence, the number of variables in-

creases dramatically as the number of tdmNets increases. For small

designs, the inter-FPGA routing may already get the optimal TDM

assignment, which is the reason that both ILP and our framework

have the same system clock period as the inter-FPGA routing result.

In our experiment, the ILP-based method cannot generate a

feasible solution for any of those large scale designs. Hence, we

Table 4: System clock period of our methods on the large
designs with more than 10K nodes.

Design

System clock period (ns)

Inter-FPGA

routing

Continuous

solver

Discretization

TM-flow DISP-flow

design1 359 (1) 328 (0.913) 333 (0.928) 335 (0.931)

design2 526 (1) 494 (0.939) 494 (0.940) 494 (0.940)

design3 617 (1) 575 (0.931) 579 (0.938) 597 (0.967)

design4 520 (1) 445 (0.855) 451 (0.868) 458 (0.881)

design5 485 (1) 419 (0.864) 422 (0.871) 436 (0.900)

design6 227 (1) 202 (0.890) 223 (0.983) 214 (0.943)

design7 179 (1) 154 (0.860) 162 (0.906) 162 (0.906)

design8 275 (1) 240 (0.874) 265 (0.963) 265 (0.964)

design9 242 (1) 226 (0.935) 226 (0.937) 230 (0.953)

design10 171 (1) 162 (0.943) 171 (0.996) 164 (0.959)

design11 210 (1) 197 (0.936) 197 (0.938) 197 (0.938)

Average (0.904) (0.933) (0.935)

Table 5: Displacement and runtime of our approach with
different discretization methods on the large designs with
more than 10K nodes.

Design

Avg. displacement Runtime (s)

TM-flow DISP-flow TM-flow DISP-flow

design1 0.29 (1) 0.13 (0.448) 1402 (1) 1790 (1.277)

design2 0.29 (1) 0.11 (0.379) 295 (1) 552 (1.873)

design3 1.05 (1) 0.07 (0.067) 3661 (1) 3672 (1.003)

design4 1.11 (1) 0.11 (0.099) 815 (1) 907 (1.113)

design5 2.64 (1) 0.15 (0.057) 1093 (1) 1126 (1.031)

design6 0.35 (1) 0.07 (0.200) 2158 (1) 2247 (1.041)

design7 0.34 (1) 0.04 (0.118) 632 (1) 673 (1.065)

design8 6.25 (1) 0.23 (0.037) 845 (1) 927 (1.098)

design9 0.58 (1) 0.08 (0.138) 132 (1) 321 (2.427)

design10 0.9 (1) 0.42 (0.467) 90 (1) 89 (0.990)

design11 0.26 (1) 0.18 (0.692) 15 (1) 25 (1.721)

Average (0.246) (1.331)

only show the results of our method in Table 4. In our experiment,

the number of solver iterations and CG iterations are set to 20

and 200 respectively. We set the timeout of the continuous solver

to be 4000 seconds. As one can see from the table, our method is

scalable on large scale design and can have about 7% improvement

on average in both flows compared to the original inter-FPGA

routing which has already been well optimized.

In the previous section, we introduce two discretization meth-

ods, which optimize total displacement and timing respectively. As

shown in Tables 4 and 5, the TM flow has better average perfor-

mance in runtime and system clock period although some cases

have worse system clock period, which are caused by the inaccurate

estimation of slack ratio. However, compared with the DISP flow, it

has a much bigger displacement. One of the reasons that the DISP

flow has worse system clock period is that the displacement-driven

discretization does not consider timing. For example, given two

solutions with the same displacement, it will not choose the one

with better timing. In terms of runtime, the DISP flow is slower

since its discretization explores a larger solution space compared to

the one in the TM flow. However, we can easily trade off runtime

and quality by changing the number of TDM ratio candidates.

4.3 Extension to Other Architectures
Although only connections between FPGA-pairs are considered in

this work, it can be easily extended to architectures where FPGAs

can communicate with each other through multiple intermediate

hops. Since our optimization is performed after routing, how the

fpga pair communicate is determined. Given this assumption, the

timing graph can be built according to the routing topology and

the wire limit constraints between hops and FPGAs can also be

modeled similarly as those between FPGAs.

5 CONCLUSION
In this paper, we extend the TDM optimization problem of previ-

ous works to meet more general constraints in multi-FPGA based

systems. We propose a novel method to optimize the system clock

period of a multi-FPGA system. To be specific, we propose a two-

step analytical framework that consists of a non-linear CG-based

continuous solver and a DP-based discretization. Several techniques

are used to improve the efficiency and effectiveness of the algo-

rithms. Experimental results show that our approach is scalable

and effective in large scale multi-FPGA based designs. About 7%

improvement can be gained after our TDM optimization. Future

works will include preconditioning in CG solver, considering dis-

cretization effect in the continuous solver, etc.

REFERENCES
[1] J. Babb, R. Tessier, M. Dahl, S. Z. Hanono, D. M. Hoki, and A. Agarwal. Logic

emulation with virtual wires. IEEE TCAD, 16(6):609–626, 1997.
[2] S.-C. Chen, R. Sun, and Y.-W. Chang. Simultaneous partitioning and signals group-

ing for time-division multiplexing in 2.5 d fpga-based systems. In Proc. ICCAD,
page 4, 2018.

[3] G. A. Constantinides. FPGAs in the cloud. In Proc. FPGA, pages 167–167, 2017.
[4] S. Hauck. The roles of fpgas in reprogrammable systems. Proceedings of the IEEE,

86(4):615–638, 1998.

[5] W. N. Hung and R. Sun. Challenges in large fpga-based logic emulation systems.

In Proc. ISPD, pages 26–33, 2018.
[6] M. Inagi, Y. Nakamura, Y. Takashima, and S. Wakabayashi. Inter-FPGA routing

for partially time-multiplexing inter-FPGA signals on multi-FPGA systems with

various topologies. IEICE Transactions on Fundamentals of Electronics, Communi-
cations and Computer Sciences, 98(12):2572–2583, 2015.

[7] M. Inagi, Y. Takashima, and Y. Nakamura. Globally optimal time-multiplexing

in inter-FPGA connections for accelerating multi-FPGA systems. In Proc. FPL,
pages 212–217, 2009.

[8] M. Inagi, Y. Takashima, and Y. Nakamura. Globally optimal time-multiplexing of

inter-FPGA connections for multi-FPGA prototyping systems. IPSJ Transactions
on System LSI Design Methodology, 3:81–90, 2010.

[9] W.-S. Kuo, S.-H. Zhang, W.-K. Mak, R. Sun, and Y. K. Leow. Pin assignment

optimization for multi-2.5 d FPGA-based systems. In Proc. ISPD, pages 106–113,
2018.

[10] A. Ling and J. Anderson. The role of FPGAs in deep learning. In Proc. FPGA,
pages 3–3, 2017.

[11] A. Makhorin. Glpk. http://www.gnu.org/ s/glpk/glpk.html, 2008.
[12] W. Naylor and B. Chapman. WNLIB. http://www.willnaylor.com/wnlib.html.

[13] J. R. Shewchuk et al. An introduction to the conjugate gradient method without

the agonizing pain, 1994.

