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Abstract—As a good trade-off between CPU and ASIC, FPGA is
becoming more widely used in both industry and academia. The
increasing complexity and scale of modern FPGA, however, impose
great challenges on the FPGA placement and packing problem. In this
paper, we propose RippleFPGA to solve the packing and placement
simultaneously through a set of novel techniques, such as (i) smooth
stair-step flow, (ii) implicit packing similar to ASIC legalization, and
(iii) two-level detailed placement. To enable the flow, a generic, efficient
and false-alarm-free legality checking method is also proposed. Besides,
due to the insufficiency of ASIC-like congestion alleviation methods, some
FPGA-routing-architecture-aware optimization techniques are proposed
to improve the routability. When evaluated by ISPD 2016 Contest
benchmarks, RippleFPGA has 5.1% better routed wirelength and 5.5×
speedup compared to all the state-of-the-art FPGA placers.

I. INTRODUCTION

Field-programmable gate array (FPGA) is an integrated circuit
(IC) designed to be reconfigurable by users after manufacturing. As
technology scaling slows down, the central processing unit (CPU),
which supports high-level programming languages, is experiencing
difficulties in boosting performance and power efficiency. Mean-
while, application specific IC (ASIC) is becoming extremely expen-
sive to design and manufacture. As a good trade-off between CPU
and ASIC, FPGA is growing in many areas such as communications,
industrial control, aerospace, consumer electronics, and artificial
intelligence [1]–[3].

In order to meet the needs of the applications, FPGA is also
evolving rapidly and over time becoming bigger, faster and more like
ASICs (e.g., the number of logic cells in a modern FPGA reaches
5.5 million [4]). The complexity and size together with the FPGA-
specific constraints, impose many challenges on the FPGA packing
and placement [5], which consume roughly half of the compilation
time [6].

A typical FPGA CAD flow is shown in Fig. 1. After logic
synthesis, the netlist consists of lookup tables (LUTs), flip-flops
(FFs), digital signal processors (DSPs), random access memories
(RAMs) and I/O pads. During packing, LUTs and FFs are grouped
together into basic logic elements (BLEs) and then further clustered
into configurable logic blocks (CLBs). After packing, placement
legally maps all the CLB/DSP/RAM/IO blocks onto the FPGA
and optimizes some metrics (e.g., wirelength and routability). Note
that besides half-perimeter wirelength (HPWL), routability is also
an important objective in placement. For one thing, an unroutable
placement, even with perfect HPWL, is useless. For another, a
difficult-to-route placement not only requires very long routing
time but also incurs significant detour and thus increase in routed
wirelength, leading to timing and power problems.
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Fig. 1: The typical FPGA CAD flow.

A. Previous Work

1) Packing for FPGAs: Previous approaches for FPGA pack-
ing can be loosely categorized into: (i) seed-based approach, (ii)
clustering-based approach, and (iii) partitioning-based approach. We
follow the convection in ASIC that clustering refers to a bottom-
up process that groups several cells together, and partitioning means
a top-down process that breaks the whole circuit into several sub-
circuits [7].

Seed-based approach iteratively selects a cell as a seed, and then
keeps merging an unmerged cell (with highest attraction) into the
seed until the capacity limit is reached. It was extensively used in
academia. By setting the attraction function differently, VPack [8], T-
VPack [9], RPack [10], iRAC [11], MO-Pack [12] AAPack [13] and
ALMPack [14] achieve various objectives. The seed-based approach
is an efficient greedy heuristic but lacks a global view. It also tends
to pack too densely by exhausting the capacity of a CLB [15].

For clustering, there are mainly two types of methods used in
ASIC placement. (1) One is a greedy heuristics that visits cells in
an arbitrary order and find a neighbor with the highest attraction for
merging, such as edge coarsening (EC) [16], [17] and FirstChoice
(FC) [18]. (2) Another approach is priority-queue-based, which
chooses the best pair among all to combine iteratively and update
the queue correspondingly, such as edge separability based clustering
(ESC) [19], BestChoice (BC) [20] and SafeChoice (SC) [21]. Among
them, BC, which prefers stronger connection but smaller area, is the
most popular with application in many ASIC placers (e.g., FastPlace
[22]). For FPGA packing, BC is adopted in HDPack [23], UTPlaceF
[24] and [25]. Note that a direct application of BC to packing will
result in a large number of clusters with half utilization, i.e., a loose
packing. A hybrid method (e.g., combined with seed-based approach)
is usually needed for avoiding the loose packing.

Netlist partitioning (refer to [26] for a survey) is a necessary
process for partitioning-based placers in ASIC. PPFF [27] applies
this placement paradigm to FPGA, where packing is done implicitly
within placement. Besides, an explicit way of packing is recursive
partitioning followed by adjusting illegal CLBs, e.g., the work
[28] and PPack [29]. Since netlist partitioning is time-consuming,
the packing approaches based on it are slow. As another way
of partitioning-based packing, GPlace-flat [30] employs recursive
geometric bi-partitioning on a flat placement. To handle the complex
design rules, they ignore the precious LUT-FF connections when
moving cells globally between two partitions. In general, the legality
checking in partitioning-based packing is more complicated than that
in bottom-up approaches (i.e., seed-based and clustering-based ones).
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(a) Three types of flows in previous work.
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Fig. 2: Different FPGA packing and placement flows.

2) Placement for FPGAs: Same as ASIC, placement in FPGA
can be classified into three categories: (i) simulated annealing, (ii)
partitioning-based approaches, and (iii) analytical approaches. The
most famous academic FPGA CAD tool VPR/VTR [31], [32] is a
representative of simulated-annealing-based methods. Partitioning-
based FPGA placers like the aforementioned PPFF recursively
partition a design and place it hierarchically.

In ASIC placement, simulated annealing and partitioning-based
approaches are outperformed by analytical ones (e.g., [33]–[35]), as
the number of placement instances substantially increases nowadays
[36]. The situation is the same in FPGA placement. Not only the
industrial placers migrate to analytical approaches [37], but also
many academic analytical FPGA placers have appeared and shown
very good result. They include quadratic placers (e.g., QPF [38],
StarPlace [39], HeAP [40], UTPlaceF [24], GPlace [30]), nonlinear
optimization placers (e.g., [25], [41], [42]) and others (e.g., CAPRI
[43] using a formulation of binary quadratic assignment).

3) Packing and placement cooperation: In the convectional FPGA
CAD flow (Fig. 1), the separation of netlist-based packing and CLB-
level placement reduces the complexity of each subproblem. But the
drawback is two-fold. (1) Without prior placement, efficient packing
algorithms suffer from the limitation that only local connectivity
information can be considered [19], [21]. Moreover, to incorporate
other metrics (e.g., timing, power, routability), the netlist-level es-
timation is very inaccurate [44]. (2) After packing, placement is
greatly confined to a fixed circuit structure [45], [46]. The wirelength
optimization is thus restricted and suboptimal. To consider other
objectives, which may require BLE-level movement, the restriction
is highly undesirable.

Various methods are proposed to overcome the drawback. One
way is to perform bottom-up packing according to the information
obtained from an initial placement, similar to physical clustering in
the ASIC world (e.g., physical SC [21], FastPlace [22]). To handle
congestion better, Un/DoPack [47] redoes the packing and placement
based on the trial pack-place result. Bringing this idea from simulated
annealing to analytical placement, UTPlaceF [24] and GPlace-pack
[30] pack after a flat initial placement. With the same idea, HDPack
[23] uses the physical information to improve timing. As another
way, GPlace-flat [30] conducts implicit packing after flat placement.
A pictorial comparison of the three types of flows, i.e., (i) the
conventional one (pack-place), (ii) packing with physical information
(place-pack-place), and (iii) flat placement followed by legalization
(place-pack), are shown in Fig. 2(a). Moreover, in detailed placement,
significantly larger solution space can be explored by breaking the
packed result and allowing BLE move [45], [46].

4) Routability in FPGA placement: The general approach for
improving placement routability, which inflates/depopulates cells
according to a congestion estimation at g-cell level, has been
successfully applied in both ASIC and FPGA fields [24], [30], [33].
Besides, being programmable, the routing architecture in FPGA is
quite different from that in ASIC [1]. CAPRI [43] starts considering
the segmented routing of FPGA by graph embedding, but the
objective is timing and congestion actually becomes worse in some
cases. Authors in [42] propose a smooth function to approximate the
discrete routing cost under their nonlinear placement framework. As
the major weakness, both works are not scalable for large designs
due to the complicated problem formulation.

B. Motivations

The key issues in previous work about FPGA packing and place-
ment that motivate our work are as follows.

1) The artificial separation of packing and placement stages may
be undesirable. However, this is a chicken-and-egg problem:
without placement information, a good packing solution is
difficult to obtain; without packing, there is no way to do a
legal placement. Aware of this, some previous works start to
blur the boundary between the two. It is of particular interest
whether stronger integration between packing and placement is
possible.

2) The bottom-up packing (including seed-based and clustering-
based one) is efficient and friendly for considering design
rules, in contrast to the partitioning-based one. But even with
physical information, the process is still based on the pairwise
attraction, which concentrates on local situation. Besides, it
requires careful engineering to control the packing density.
Many methods need to iteratively update the packing parameters
until number of packed CLBs is not overflowed [24], [30]. On
the other hand, the partitioning-based approach has more global
view and controls the packing density implicitly, but is time-
consuming and has difficulty in legality checking. Therefore, it
is highly desirable to combine the strengths of the both together.

3) As FPGA technology advances, more flexible configuration
within CLB is allowed to improve the performance [48]. This,
however, makes the legality checking in CLB much more com-
plicated. It is a major motivation for a separated packing stage
[14], [23]. Therefore, an efficient and effective legality checking
for packing, which can enable many high-level techniques, is
in need.

4) To better handle routability, it is also necessary to consider the
routing issues special to FPGAs in an effective and efficient
way.
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Fig. 3: Illustration of Xilinx UltraScale architecture.

C. Contributions

In this paper, we propose a routability-driven simultaneous pack-
ing and placement engine called RippleFPGA for modern FPGAs.
Our major contributions are summarized as follows.

1) We propose a stair-step framework that interleaves the packing
and placement stages (briefly illustrated by Fig. 2(b)). It not
only makes the optimization flow more smooth and integrated,
but also enables fast feedback of accurate estimation (e.g.,
routability) from a final state to an intermediate state.

2) We design an implicit CLB packing scheme, which is similar
to ASIC legalization. By approximating the analytical global
placement directly, it can implicitly control the packing density
and directly reflect objectives considered in placement.

3) We propose a generic, efficient and false-alarm-free CLB le-
gality checking and slot assignment methods for the modern
FPGA with complex design rules, which enable the implicit
CLB packing and the BLE move in detailed placement.

4) Under this framework, we propose some routing-architecture-
aware techniques including partition allocation, CLB slot as-
signment and alignment optimization, together with the ASIC-
like congestion alleviation methods in global and detailed
placement stages.

The remainder of this paper is organized as follows. Section II
gives an introduction to our target FPGA architecture as well as the
problem formulation. Section III provides an overview of our flow.
Section IV and V then introduce packing and placement algorithms
in detail respectively. Section VI describes our speedup techniques.
Section VII shows the experimental results, and we finally conclude
in Section VIII.

II. PRELIMINARIES

A. Target Architecture

Our target architecture is Xilinx Ultrascale VU095 [5], a repre-
sentative of modern FPGAs. Its layout is illustrated in Fig. 3. There
are a large number of CLB/RAM/DSP/IO blocks of various sizes.
Each block can only be placed into sites of its own type.

The internal structure of CLB is shown by Fig. 4. Each CLB
can contain at most eight BLEs, which are divided into two halves.
Within a BLE, there are at most two LUTs and two FFs under the
following constraints.

1) For the two LUTs, if both are used, the total number of distinct
inputs should be no more than five. If only one LUT is occupied,
there is no restriction on it. Note that the input of a single LUT
ranges from two to six.
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Fig. 4: Illustration of CLB and BLE in Xilinx UltraScale.

2) For the two FFs, their clock enable (CE) signals can differ, but
the clock (CK) and set/reset (SR) signals need to be identical.

3) CK, SR and the two CEs for the four BLEs in a half should be
the same.

The four FFs that are required to use the same CE will be referred
as an FF group. Note that there are thus totally four FF groups in a
CLB, with two in each half.

For routing, all the external connections of blocks go to the
dedicated switch boxes first, which are then connected by pre-defined
routing segments. Inside a CLB block, two types of nets can be
physically achieved without going through the switch box: (i) inputs
shared by the two LUTs in the same BLE require no wire, and
(ii) an LUT drives an FF within the same BLE (referred as LUT-FF
connection in this paper), which is implemented by internal exclusive
wires. In terms of routing demand as well as delay, the preference
of connections should be: (i) requiring no switch box, (ii) assigning
pins to the same switch box, and (iii) assigning pins to different
switch boxes. This preference is the major consideration of packing.

Note that the architecture of Xilinx Ultrascale VU095 is very
typical in modern FPGAs. Our methodologists are also generic,
which can thus be easily adapted to other commercial families or
FPGAs from other vendors.

B. Problem Formulation

The wirelength and routability evaluation of a placed design can
be combined into a single metric: the routed wirelength. Note that to
have routed wirelength, the placement should be routable first. The
problem formulation is thus as follows.

Problem 1. (Routability-Driven FPGA Placement) Given a netlist of
LUTs, FFs, DSPs, RAMs and IOs, and the target FPGA architecture,
decide the sites and slots of cells to minimize the routed wirelength.

III. FLOW OVERVIEW

In ASIC placement, there are typically three stages: (i) global
placement (GP), (ii) legalization (LG), and (iii) detailed placement
(DP) [33]. GP gives the location of each cell across the chip
to optimize wirelength as well as others under the cell density
constraint. LG aligns cells to the placement sites without overlapping.
Finally, DP further improves the solution by relocating cells.

RippleFPGA integrates packing and placement by a stair-step flow,
which is divided six stages (Fig. 2(b)):

1 Flat GP: An initial GP is conducted on the flat netlist to mini-
mize HPWL. At an early point of this stage, netlist partitions are
globally allocated to fit the unbalanced horizontal and vertical
routing resources.
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2 Soft BLE packing. LUTs and FFs are packed into BLEs. The
BLEs generated here are soft since in later stages they can not
only be merged with each other but also be split. Only LUTs
and FFs with strong mutual connection and of small distance
apart are packed together.

3 BLE GP. The second GP is on the coarsened BLE-level netlist.
Some later iterations are congestion-driven. In the middle of this
GP, DSPs and RAMs are legalized and fixed in their locations
due to their large sizes and high connectivity.

4 Implicit CLB packing (LG). Soft BLEs are packed into CLB
implicitly, based on an efficient legality checker and guided by
Tetris-like LG [49].

5 Two-level DP. In DP, block-level and BLE-level move are
conducted to further improve HPWL as well as routability.

6 Slot assignment in CLB. Lastly, LUT/FF slots within CLBs
are assigned to maximize the switch-box-free connection.

This smooth star-step framework helps us to achieve superior
results over others (e.g, UTPlaceF [24] and GPlace-flat [30], rep-
resentatives of place-pack-place and place-pack flows).

IV. PACKING ALGORITHMS

This section focuses on packing methodologies (i.e.,
Stages 2 4 6 ), while placement algorithms will be introduced in
the next section.

A. Max-Weight-Matching-Based BLE Packing

In Stage 2 , LUTs and FFs are packed into soft BLEs according
to both the physical information obtained from the initial GP and
the connectivity. Only LUTs and FFs with strong mutual connection
and small distance are packed together. A simple BLE structure,
where each BLE contains only one LUT and one FF, is assumed in
many previous work. In UltraScale, the two LUTs and two FFs with
sophisticated constraints in a BLE pose great challenges to packing.

In general, our BLE packing consists of two steps. First, FFs
driven by an LUT are considered to be merged with the LUT. Second,
two LUTs (and their attached FFs) are considered to be merged
together. Besides saving spaces, the other objective of BLE packing
is to increase the local switch-box-free connections (i.e., the shared
LUT inputs and the LUT-FF connections), which is significant for
routability and wirelength. For the simplicity of illustration, an LUT
or FF may also be regarded as a single-cell BLE from now on.

1) LUT-FF connecting: LUT-FF connection is precious as men-
tioned in Section II-A. In this step, we try to merge an LUT with
the FFs driven by it. FFs with the Manhattan distance from the LUT
exceeding a threshold dmax (which is empirically set to 20 switch-
box units) will be ignored, to avoid a huge disturbance to wirelength.
An LUT may drive multiple FFs. In this case, FFs are sorted by the
distance from the LUT and the first two legal FFs are selected.

2) LUT pairing: After the first step, each BLE contains at most
one LUT. The single-LUT BLEs are considered to be merged
together, in order to save spaces and increase input sharing. We
construct a weighted graph G1(V1, E1;w1), where a vertex v ∈ V1

represents a single-LUT BLE and an edge (u, v) ∈ E1 represents
a candidate pairing. A pairing is a candidate if and only if: (1) the
two LUTs have no conflict. (2) the attached FFs have no conflict.
(3) the distance between the two LUTs is smaller than dmax. (4) the
number of shared inputs between the two LUTs is not smaller than
a threshold (which is empirically set to 2).

Furthermore, we let the weight of an edge (u, v) be the number
of inputs that u and v share. A maximum weight matching problem
on G1 is then solved, where each matching indicates that the two
corresponding BLEs should be merged into one. Note that the edge

weight here does not incorporate physical distance according to
two considerations. (1) LUT pairs with large distance are already
forbidden, so ignoring distance leads to negligible wirelength loss.
(2) Within a BLE, shared inputs between two LUTs directly imply
precious switch-box-free connections, while for LUTs with close
GP locations, it makes no difference by assigning them (i) to the
same BLE, (ii) to different BLEs but the same CLB, or (iii) even to
different CLBs sharing the same switch box.

In short, three types of soft BLEs are obtained from the above
BLE packing: (i) BLEs containing both LUTs and FFs, (ii) BLEs
containing LUTs only, (iii) BLEs containing FFs only. The packing
result here is a guidance instead of a restriction for the following
stages. The LUTs and FFs that merged into the same soft BLE
are very likely to stay in the same BLE in the end, but separation
is possible if needed. Besides, soft BLEs can also merge with
each other to save space, without reducing the switch-box-free
connections.

B. Max-Cardinality-Matching-Based CLB Legality Checking

In the design flow, we need to repeatedly query whether several
given soft BLEs can be legally placed into a CLB. Only with an
efficient legality checker, the implicit CLB packing guided by Tetris-
like LG (Stage 4 ) and the BLE move in DP (Stage 5 ) are possible.
In most scenarios, checking is done incrementally, which is formally
defined as follows.

Problem 2. (Incremental Legality Checking). Given a set of soft
BLEs which can be legally placed into a CLB, and another soft BLEs,
decide whether they can be legally placed into a CLB together.

In [50], we use a dedicated finite state machine with many tedious
case discussion to check legality and assign LUT/FF slots. There,
two (or even three or four) soft BLEs can be merged into one, but
LUT-FF connections existing in the input BLEs are not allowed to be
broken. To avoid the number of states growing exponentially, some
merging between BLEs is decided greedily, which in some cases
leads to false alarms (e.g., results sensitive to order of BLEs added).

In this paper, a scheme that separates the legality checking
and the slot assignment is proposed. The improvement is in four
aspects. (1) The checking is now optimal without false alarm. (2)
By deferring the slot assignment, the legality checking, which is
frequently invoked, is more efficient. (3) Without tedious discussion
of the complicated design rules, the scheme is generic and also easy
to implement. (4) By allowing breaking LUT-FF connections, the
success rate and the number of shared LUT inputs are increased.
Note that even though LUT-FF connections can be broken, the actual
number of breaking is tiny.

The legality is checked incrementally by Algorithm 1. By ignoring
LUT-FF connections temporarily, LUTs and FFs inside the new BLE
are checked individually (lines 3–13). When trying adding an LUT
(lines 15–29), optimal solution will be found by max-cardinality
graph matching (lines 27-28) after the greedy method (lines 16–26)
fails. In the LUT pair graph for matching (line 27), each vertex is an
LUT while edges represent valid LUT pairs. To add an FF (lines 30–
38), FF groups with the same CK, SR and CE will be exhausted first
to save space. In our implementation, some redundant checking (e.g.,
FG0 and FG1 have the same CK and SR) is avoided by two-level
loops, but here the idea is shown by a single loop.

Suppose there are nl LUTs and nf FFs in a CLB, then the time
complexity of Algorithm 1 is O(n2.5

l + nf ). To be more specific,
backup and recover (lines 2 and 10) take O(nl+nf ); the matching in
AddLUT needs O(n2.5

l ) [51]; AddFF is O(1) because of checking
up to four FF groups. The legality checking in [50] is also polynomial
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Algorithm 1 Incremental Legality Checking
Require: a CLB c containing several BLEs, another BLE b;
Ensure: whether b can be added;
1: Local variables: set of single LUTs LS, set of LUT pairs LP , FF group
FGi (i = 0, 1, 2, 3);

2: Backup LS,LP, FGi;
3: for LUT/FF v in b do
4: if v is an LUT then
5: succ← AddLUT(v);
6: else
7: succ← AddFF(v);
8: end if
9: if !succ then

10: Recover LS,LP, FGi;
11: return false;
12: end if
13: end for
14: return true;

15: function AddLUT(v)
16: for u ∈ LS do;
17: if (u, v) is a valid LUT pair then;
18: LS ← LS\{u};
19: LP ← LP ∪ {(u, v)};
20: return true;
21: end if
22: end for
23: LS ← LS ∪ {v};
24: if |LS|+ |LP | ≤ 8 then
25: return true;
26: end if
27: Solve max-cardinality matching on LUT pair graph;
28: return |LS|+ |LP | ≤ 8;
29: end function

30: function AddFF(v)
31: for i := 0 to 3 do
32: if |FGi| = 0 or (v shares CK, SR & CE with FGi and |FGi| <

4|) then
33: FGi ← FGi ∪ {v};
34: return true;
35: end if
36: end for
37: return false;
38: end function

to nl and nf , but the constant here is smaller by very simple
checking, which will be evidenced by the experiment in Section VII.

C. Refined-Tetris-Based BLE Legalization

In Stage 4 , CLB packing is implicitly conducted under a LG
framework. LG needs to consider the legality of a move and to
minimize the disturbance to GP simultaneously. Unlike DSP/RAMs,
a CLB site can contain multiple BLEs under the complicated
legalization rules.

Based on the legality checking method described in Section IV-B,
our BLE LG algorithm (Algorithm 2) refines Tetris, which legalizes
cells sequentialy without affecting previously legalized cells. Apart
from the displacement, which is the only objective of Tetris, HPWL
is also captured in the LG of RippleFPGA. Candidate sites under
the restriction of displacement are first obtained (line 6). A legal
site is then found by attempting the candidate sites in increasing
HPWL order (lines 10–15). If all attempts fail in this round,
candidate sites with larger displacement are tried. To encourage
HPWL optimization, the number of candidates sites in each round
is a relatively large number. As this algorithm is highly flexible in
choosing the secondary object (HPWL in ours), it can also be adapted
for optimizing other objectives like timing, power, etc.

If treating the bounded nl and nf as constants, the time com-
plexity of Algorithm 2 depends on the final displacement dmax.

Algorithm 2 Refined-Tetris-Based BLE LG
Require: BLEs B with their GP locations, min number of candidate sites

in a round ncand;
Ensure: The CLB site that each BLE belongs to;
1: for b ∈ B do
2: Displacement d← 0;
3: while b is not placed do
4: Candidate sites S ← ∅;
5: while |S| < ncand do
6: Add CLB sites with displacement d to S;
7: d← d+ 1;
8: end while
9: Sort S by ascending HPWL;

10: for s ∈ S do
11: if b can be assigned to s (by Algorithm 1) then
12: Assign b to s;
13: Break;
14: end if
15: end for
16: end while
17: end for
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Fig. 5: Max-weight matching on (a) the original graph G2 and (b)
the graph without non-positive edges G′2.

In each round with displacement d, |S| = O(d) and the runtime
is O(d log d) due to the sorting (line 9). The total time is thus
O(

∑dmax
d=0 d log d) = O(d2max log dmax). Note that dmax is mostly

very small in practice.

D. ILP-Based Slot Assignment within CLB

After repeatedly checking legality and adding BLE during LG and
DP stages, the CLB that each BLE belongs to is known, but the slot
for each LUT/FF still needs to be determined. In our flow, the slots
are assigned in Stage 6 after all cell movements are settled. Besides
legality, the other target in slot assignment is to maximize the shared
LUT inputs and the LUT-FF connections, which is similar to BLE
packing. In general, slots are assigned by two steps. First, the LUT
pairs are modified to consider the above two connections instead of
legality only. Second, slots for the LUT pairs and FFs are determined
to maximize the LUT-FF connections.

1) LUT Pairing: Different from BLE packing, LUT pairing in
slot assignment is decided firstly, since legality is a hard constraint
now. Not only shared LUT inputs but also LUT-FF connections
are considered in LUT pairing. We construct a weighted graph
G2(V2, E2;w2) again, where a vertex v ∈ V2 represents an LUT
and an edge (u, v) ∈ E2 represents a legal LUT pair. The edge
weight w2(u, v) between LUTs u and v is set as follows:

w2(u, v) = NSI(u, v) + (PNF (u, v)− PNF (u)− PNF (v)),
(1)

where NSI is the number of shared inputs and PNF is the potential
number of FFs for an LUT (pair). PNF can be zero, one or two,
which is the maximum number of FFs that (i) are in this CLB, (ii)
are logically driven by this LUT (pair), and (iii) have no type conflict
(if PNF is two).

After constructing G2, general maximum-weight matching algo-
rithm does not work because of negative-weight edges and constraint
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Fig. 6: Max-weight matching on (a) the original graph G2 and (b)
the graph with penalized edges. (c) Max-weight matching with at
least two edges on G2.

C on cardinality. The cardinality constraint is due to the limited
capacity of CLB (eight BLEs at most), which is the major difficulty
of the problem. By removing the non-positive edges and the cardi-
nality constraint first, the maximum-weight matching can be easily
solved. If the result is legal, it is optimal by Theorem 1. Fig. 5
shows an example. Suppose at least two matchings are required
(i.e., C = 2). By ignoring non-positive edges CD and EF in
G2 and the cardinality constraint, it becomes easy to obtain max-
weight matching M = {AB,DE} on the resulted graph G′2. Since
|M | = 2 ≥ C, M is the optimal constrained matching on G2.

Theorem 1. For a graph G2 = (V2, E2;w2), and a graph induced
by its positive edges G′2 = G2[{e|e ∈ E,w2(e) > 0}], if the
maximum-weight matching M on G′2 satisfies |M | ≥ C, then
M is also the maximum-weight matching on G2 under constraint
|M | ≥ C.

Proof. A negative edge of G2 only decreases the matching weight
and thus cannot occur in the maximum-weight matching. Therefore,
G2 and G′2 have the same maximum-weight matching. Since the
cardinality constraint only makes solution space smaller, optimal
matching on G2 without constraint is the upper bound of matching
on G2 with constraint.

If M violates the cardinality constraint, we add a constant P to
each edge weight as penalty, by the idea of Lagrangian relaxation.
Since it will be computationally impractical to iteratively update P ,
P is set large enough. Note that P =

∑
e∈E2

|w2(e)| is sufficient
for guaranteeing the legality (i.e. maximum cardinality) because of
Theorem 2. Then, pairs with negative weight are split in descending
order until the cardinality constraint is not violated. An example
(C = 2) is in Fig. 6. The max-weight matching without constraint
on G2 is M = {AB}, which is illegal. By adding sufficient penalty
to edges, the max-weight matching on Fig. 6(b) is {AF,BC,DE}.
The solution is legal now but can be improved by excluding negative
edge DE, as Fig. 6(c) shows.

Theorem 2. For a graph G2 = (V2, E2;w2), define G′′2 =
(V2, E2;w

′′
2 ), where w′′2 (e) = w2(e)+P with P =

∑
e∈E2

|w2(e)|.
The maximum-weight matching M ′′ of G′′2 is also a maximum-
cardinality matching of G′′2 .

Proof. Suppose it is false and the maximum-cardinality matching is
M∗ with |M∗| > |M ′′|. Then w′′2 (M

∗) − w′′2 (M
′′) = (|M∗| −

|M ′′|) · P + w2(M
∗) − w2(M

′′) ≥ P + w2(M
∗) − w2(M

′′) >
P −

∑
e∈E2

|w2(e)| = 0. Therefore, M ′′ is not a maximum-weight
matching, which is a contradiction.

2) LUT-FF Connecting: Now, there are some LUTs (or LUT
pairs) and FFs. For candidate LUT-FF connections, the preferred
action is to assign the corresponding LUTs and FFs to the same BLE
(i.e., to achieve the connections). However, different candidates may
conflict with each other. The problem is formally stated as follows.

Problem 3. (LUT-FF Connecting in CLB). Given some LUT pairs
and FFs which can be legally placed into a CLB, decide the specific
legal slots for them to maximize the achieved LUT-FF connection.

The problem can be solved by integer linear programming (ILP).
Suppose the set of LUT pairs is L and the set of FFs is F . Binary
variables xl,i represents whether LUT pair l ∈ L is assigned to the
i-th half, yf,i represents whether FF f ∈ F is assigned to the i-th FF
group. Let C = {(l, f)} be the set of candidate LUT-FF connections
where LUT pair l drives FF f . The decision variable zl,f indicates
whether (l, f) ∈ C is achieved. There are then the following legality
constraints.

• Each LUT pair or FF has one and only one assignment:

1∑
i=0

xl,i = 1, ∀l ∈ L, (2a)

3∑
i=0

yf,j = 1, ∀f ∈ F. (2b)

• Each half or FF group has limited capacity:∑
l∈L

xl,i ≤ 4, ∀i ∈ {0, 1}, (3a)∑
f∈F

yf,j ≤ 4, ∀j ∈ {0, 1, 2, 3}. (3b)

• FFs with different CK, SR and CE are conflicted:

yf,j + yf ′,j ≤ 1, ∀(f, f ′) with different CK/SR/CE,

∀j ∈ {0, 1, 2, 3}, (4a)

yf,j + yf ′,j′ ≤ 1, ∀(f, f ′) with different CK/SR,

∀(j, j′) ∈ {(0, 1), (2, 3)}. (4b)

• xl,i and yf,j is binded if the LUT-FF connection is achieved.
That is, zl,f → (xl,0∧ (yf,0∨yf,1))∨ (xl,1∧ (yf,2∨yf,3)). By
introducing auxiliary binary variables sl,f,0 and sl,f,1, it can be
expressed as:

sl,f,i ≤ xl,i, ∀i ∈ {0, 1}, (5a)

sl,f,i ≤ yf,2i + yf,2i+1, ∀i ∈ {0, 1}, (5b)

zl,f ≤ sl,f,0 + sl,f,1, ∀(l, f) ∈ C. (5c)

• Due to the limited BLE capacity, from an FF group to an LUT
pair, there can be only one achieved connection:

zl,f + zl,f ′ + yf,j + yf ′,j ≤ 4,∀(l, f), (l, f ′) ∈ C,

∀j ∈ {0, 1, 2, 3}. (6)

The ILP formulation is thus:

max
∑

(l,f)∈C

zl,f , (7a)

s.t. xl,i, yf,j , zl,f , sl,f,i are binary variables, (7b)

(2)− (6).

This formulation can be improved by two modifications.
First, there are numerous constraints (between every pair of con-

flicted FFs) in (4). For example, Assuming two CK/SR types, two CE
types in each CK/SR type, and four FFs under each CE type, the total
number of constraints is (4×4)× (42)×4+(8×8)× (22)×4 = 640.
To avoid such extensive enumeration, type representatives can be
used (in this subsection, a type refers to the same configuration of
CK SR and CE hereafter). Suppose K is the set of FF types. Let Fk

represent the set of FFs of type k ∈ K, and the type representative
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tk,j indicate whether Fk occupies j-th FF group. Then, (4) can be
replaced by:

tk,j ≥ yf,j , ∀f ∈ Fk, ∀k ∈ K,∀j ∈ {0, 1, 2, 3}, (8a)∑
k

tk,j ≤ 1, ∀j ∈ {1, 2, 3, 4}, (8b)

tk,j + tk′,j′ ≤ 1, ∀(k, k′) with different CK/SR,

∀(j, j′) ∈ {(0, 1), (2, 3)}. (8c)

Under the same assumption, the number of constraints is reduced
from 640 to 16× 4 + 4 + (2× 2)× 4 = 84.

Second, the LUT pairs and FFs without internal LUT-FF connec-
tion, which are the majority in L and F , can be removed from the ILP
formulation to reduce the variable number significantly. The variables
for such unconnected LUT pairs can be deleted directly since
theirs halves can be arbitrarily determined later without affecting
both constraints and objectives. However, postponed assignment of
unconnected FFs may fail due to the FF conflict constraints. To
guarantee sufficient legal slots, type representative tk,j helps again:

3∑
j=0

tk,j ≥ d|Fk|/4e, ∀k ∈ K. (9)

In summary, with the help of type representatives, a much more
efficient ILP formulation equivalent to (7) is:

max
∑

(l,f)∈C

zl,f , (10a)

s.t. xl,i, yf,j , zl,f , sl,f,i, tk,j are binary, (10b)

(2), (3), (5), (6), (8) and (9).

with unconnected LUT pairs and FFs removed from sets L,F, Fk

in (2), (3), and (8). It can be efficiently solved by ILP solver.
In practice, many cases may be easy to optimize. Therefore, a

greedy heuristics is attempted for each case first. Essentially, LUT
pairs are sequentially committed in the order of number of candidate
LUT-FF connections. For each LUT pair, the achieved LUT-FF
connection is maximized as long as it is legal. Then, an upper
bound of the total achieved LUT-FF connection is calculated by∑

l∈L PNF (l). If the heuristics can accomplish the upper bound,
there is no need to invoke ILP, which saves runtime. In experiment
results, we will show that usually only single-digit number percent
of cases actually call ILP, which makes the slot assignment more
efficient in general.

V. PLACEMENT ALGORITHMS

There are two GP stages in our flow, a flat one (Stage 1 ) and a
BLE one (Stage 3 ), where two routibility optimization techniques,
including partition allocation and cell inflation/shrinkage, are applied.
After LG, the congestion-aware two-level DP (Stage 5 ) further
improves the solution.

A. Heterogeneous Global Placement Engine

Our GP engine in Stages 1 3 is based on Ripple [33], which
invokes the lower bound and upper bound computations alternatively.
The overall flow of GP is shown in Fig. 7. In the lower bound phase,

the wirelength minimization is formulated as a quadratic programing
(QP), where the “Bound2Bound” (B2B) [52] net model is used to
capture the HPWL objective. The minimized wirelength, however,
leads to many cell overlaps. In the upper bound phase, the placement
is roughly legalized by spreading the cells. To be more specific, the
chip is divided into bins and cells are iteratively spread until the
cell density of each bin is within a threshold. In the next lower
bound phase, pseudo pins and pseudo nets are added for movable
cells. A pseudo pin is placed at the cell location in the last upper
bound phase, while a pseduo net connects a pseudo pin and the
corresponding cell. By iteratively calling the lower and upper bound
computations and gradually increasing the pseudo net weights, we
can obtain a converged GP result with few overlaps and minimized
wirelength.

Recall that each site in the heterogeneous FPGA architecture is
dedicated for a type of cells, which should be taken care of. Other-
wise, due to type mismatch, LG may cause significant displacement
even if GP has very few overlaps. In our GP, fence constraints are
used to avoid placing cells into illegal sites. That is, when spreading
cells of a type in the upper bound phase, the maximum cell density
of unmatched sites is set to zero.

Another issue in GP is how to set the areas of LUT/FFs (in flat
GP) and BLEs (in BLE GP). For DSPs and RAMs, the area can be
set straightforwardly, since each DSP/RAM site can hold one and
only one DSP/RAM block. Without CLB packing, the number of
LUTs and FFs that a CLB site can contain is unknown. Furthermore,
LUTs and FFs share the CLB sites and cannot be separated by
fence constraints. Their areas are thus set by the following adaptive
estimation. The estimated number of FFs that a CLB can contain cff
is set to 9, which is the average of maximum (16 if there is totally
no conflict) and minimum (2 if FF CK/SR types are all different).
Similarly, the estimated number of LUTs clut that a CLB can contain
is 12, the average of 16 and 8. Here, a six-input LUT is counted
twice. For a design with nff FFs and nlut LUTs, the number of
CLBs needed is thus estimated to be max{nlut/clut, nff/cff}. The
base LUT/FF area alf is then adaptively calculated by:

alf =
max{nlut/clut, nff/cff}

nlut + nff
. (11)

The actual LUT/FF area is therefore:

a′lf = alf · scale, (12)

where scale is a scale factor tuned for a trade-off among HPWL,
routability and LG difficulty, which is design independent. In our
implementation, the default value is 1.4. If the design shows ex-
tremely large cut ratio during netlist partitioning, which implies
routing difficulty, scale will be set larger. Besides, the area of a
soft BLE is just the summation of those of its member LUT/FFs.

B. Routing-Architecture-Aware Partition Allocation

At an early point of Stage 1 , netlist partitions are globally
allocated to fit the routing supply imbalance.

Analytical ASIC placers typically do not need netlist partitioning,
where the netlist minimization relies on the mathematical optimiza-
tion on the flat netlist. However, the Xilinx UltraScale FPGA is
unbalanced in the routing supply of the horizontal and vertical
directions. It has 168 × 480 sites and 82 × 480 switch boxes on
the chip (roughly two horizontally-neighbored sites share a switch
box, as Fig. 3 shows). Despite the chip area is actually square, the
distance measured by number of switch boxes, which implies timing
as well as routing resource in FPGA, is significantly unbalanced
between the width and height. Meanwhile, the number of wire
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Fig. 8: Routability problem due to the unbalanced horizontal and ver-
tical routing supply: (a) placement with small wirelength but illegal
cell density; (b) spreading cells by strictly maintaining cell order;
(c) spreading cells with partition allocation. The final placement
results of a design (d) without initial partition allocation and (e)
with allocation.

segments between two horizontally-aligned switch boxes (another
type of routing resource) is nearly the same as the corresponding
vertical one.

The imbalance in routing supply leads to more serious congestion
in the vertical direction. Regarding our GP method, the lack of free
space in the horizontal direction leads to high cost in wirelength and
congestion during cell spreading, as Fig. 8(a) and Fig. 8(b) show.
Furthermore, when using the cell inflation technique to alleviate
the identified congestion, much horizontal demand is transformed
to vertical one during the vertical cell spreading. It thus exacerbates
the vertical congestion, which is already more serious.

As a result, RippleFPGA allocates the netlist partitions vertically
at an early point of the flat initial GP. In this way, the routing
demand fits the unbalanced routing supply and avoids the congestion,
as Fig. 8(c) shows. Note that different from partitioning-based GP,
where a partition of the netlist is restricted to a geometric region, our
partition allocation only generates a better initial solution to guide
the later stages without posing any constraint. Moreover, we put high
requirement on partitioning and only manipulate global partitions,
which is controlled by a minimum cut ratio cmin and a minimum
partition size nmin respectively.

The partitions are allocated after a few (e.g., two) iterations of GP,
which provides initial cell locations. There are generally two steps.
First, a recursive hypergragh bipartition is conducted to identify the
obvious sub-circuits in the netlist. Second, the identified partitions
are relocated according to their locations in GP and their relationship
in the bipartition hierarchy.

1) Recursive Netlist Bipartition: A direct k-way partitioning
usually performs better than recursive bipartitioning in terms of
cut size. However, the number of partitions needed is unknown in
our application scenario, since only partitioning with small cut size
is desirable. Therefore, the scheme of recursive netlist bipartition,
which stops when the cut size becomes too large, is adopted. Also,
the area of a partition should be sufficiently large to span the chip
horizontally with a reasonable aspect ratio, because partitions need
to be vertically allocated later. The detailed method is shown in
Algorithm 3. The netlist Gnl is partitioned recursively until either
the size of the sub-circuit too small (line 2) or the cut size is too
large (line 7). Note that the cut constraint (determined by ratio cmin)
is a local relative value measuring how obvious the partitioning is,
while the constraint nmin on the sub-circuit size is a global absolute

Algorithm 3 Recursive Netlist Bipartition

Require: Netlist Gnl = (Vnl, Enl), min cut ratio cmin, min partition size
nmin, max imbalance δmax;

Ensure: Recursive bipartition of Gnl;
1: function Bipart(Gnl)
2: if |V | ≤ nmin then
3: return ;
4: end if
5: Obtain sub-partitions Gnl1 = (Vnl1, Enl1) and Gnl2 =

(Vnl2, Enl2) of Gnl by multi-level hypergraph bipartition under max
imbalance constraint of δmax;

6: if cut size > cmin · |Enl| then
7: Abandon Gnl1 and Gnl2;
8: else
9: Bipart(Gnl1);

10: Bipart(Gnl2);
11: end if
12: end function

Algorithm 4 Partition Allocation

Require: Netlist Gnl = (Vnl, Enl), cell locations (xi, yi), chip width W ;
Ensure: updated cell locations (x′i, y

′
i);

1: Bipart(Gnl);
2: Increase cell area if the cut size is large;
3: A, yavg ← ObtainInfo(Gnl);
4: Bottom of the target region yl ← yavg − A

2W
;

5: RelocPart(Gnl, yl);

6: function ObtainInfo(Gnl)
7: if Gnl has no sub-partitions then
8: A← total cell area of V ;
9: yavg ← average y-coordinate of V ;

10: else
11: A1, yavg1 ← ObtainInfo(Gnl1);
12: A2, yavg2 ← ObtainInfo(Gnl2);
13: A← A1 +A2;
14: yavg ←

|V1|×yavg1+|V2|×yavg2

(|V1|+|V2|)
;

15: end if
16: return A, yavg ;
17: end function

18: function RelocPart(Gnl, yl)
19: if Gnl has no sub-partition then
20: Height of target region h← A/W ;
21: Sort Vnl by yi;
22: y′i ←

i
|V | · h+ yl for vi ∈ V ;

23: Sort Vnl by xi;
24: x′i ←

i
|V | ·W for vi ∈ V ;

25: else if yavg1 < yavg2 then
26: RelocPart(Gnl1, yl);
27: RelocPart(Gnl2, yl +

A1
W

);
28: else
29: RelocPart(G2, yl);
30: RelocPart(G1, yl +

A2
W

);
31: end if
32: end function

value.
Besides, if the cut size obtained in the partitioning is huge, which

indicates the design is difficult to route, the cell area used in GP is
increased correspondingly (line 2 in Algorithm 4).

2) Partition Relocation: In order to minimize the disturbance to
the wirelength in initial rough GP, sub-circuits are vertically aligned
by the method as shown in Algorithm 4. To respect the connections
between partition, sub-partitions of a same parent partition should
be placed next to each other; the relative order in vertical direction
is maintained if possible, since it implies their connections to IO
(lines 25–31). Within each sub-circuit, the cells are moved and spread
to a designated bounding box while keeping their relative order of
in x and y directions (lines 21–24). The height of the bounding box
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Fig. 9: Congestion estimation on a design by (a) Vivado and (b)
ours, and on another design by (c) Vivado and (d) ours.

is determined by total cell area (line 20) and the width is the chip
width. Before moving cells, the information needed is calculated in
a post-order traversal of the bipartition tree (lines 6–17).

The impact of our partition allocation is shown by Fig. 8. Without
the initial partition allocation, sub-circuits are messed up and a
sub-circuit may distribute vertically along the chip, which causes
bad routability (Fig. 8(d)). With guidance, the messing is avoided
(Fig. 8(e)).

C. Congestion-Driven Global Placement

In some later iterations of Stage 3 , cells are inflated and shrunk
to improve routibility and wirelength according to congestion. Here,
a congestion estimation is first needed. Routing result generated
by the actual FPGA routing tool, which will also be the final
evaluation, is the most accurate choice. It, however, requires much
runtime. Meanwhile, the industrial global router is integrated in the
commercial tool and cannot be individually invoked. Therefore, our
own congestion estimation is needed.

In [53], the congestion map is built according to the net bounding
box. It estimates routing congestion by the number of nets that may
consume a site, i.e, the total number of bounding boxes covering a
site.

However, two nets with the same bounding box may differ
substantially in routing demand, due to the highly diverse number of
pins. To take this into account, a bounding box should be weighted
properly. We will first divide the FPGA chip into global routing cells
(g-cells) such each g-cell represents a switch box. For a g-cell, the
cell pins that it covers are mapped as its pins. After obtaining a
new netlist on g-cells, we can calculate the weighted bounding box
overlaps of the i-th g-cell by:

congi =
∑

m∈Ni

NW (|m|) ·HPWL(m)

|Gm|
, (13)

where NW is the net weight related to the pin number [54], Ni is
the set of nets intersecting with g-cell i, and Gm is the set of g-cells
covered by net m. As Fig. 9 shows, our model can estimate routing
congestion quite accurately comparing with that reported by Vivado.

Based on the congestion estimation, we focus on routing con-
gestion when maintaining previous good HPWL in some later GP
iterations. More BLEs are placed to regions with low congestion
to save wirelength, while congested regions should be sparser.
Therefore, in each iteration, the sizes of BLEs placed in congested
and uncongested regions are inflated and shrunk respectively. In
implementation, we inflate the BLEs in the congested (10% most

(a)

CLB

DSP/RAM

(b)

Fig. 10: Larger disturbance to GP when legalizing DSP/RAMs due
to their (a) higher connectivity, and (b) larger area.

congested if there are more) g-cells, and shrink those in the uncon-
gested (30% least congested if there are more) g-cells. The rate of
inflating and shrinking is empirically set to 20%. After changing
the areas of the BLEs, a short GP with high pseudo net weight is
executed to adjust the positions of the BLEs and alleviate routing
congestion. Since shrinking BLEs may result in placing too many
BLEs in a region and thus cause large displacement during LG. LG
is applied at the beginning of each iteration, and cells with large
displacement are not allowed to shrink. By the procedure above,
routing congestion can be distributed more evenly across the chip.

D. Bipartite-Matching-Based DSP/RAM Legalization

Inspired by [42], RippleFPGA legalizes DSP/RAMs before BLEs,
because legalizing DSP/RAMs incurs much larger disturbance to
GP than BLEs. As Fig. 10(a) shows, with the same displacement,
DSP/RAMs will increase the wirelength much more than BLEs
due to their high connectivity. Moreover, since DSP/RAMs are
much bigger, legalizing them tends to induce more displacement,
as Fig. 10(b) shows. However, instead of two consecutive batches
of DSP/RAM LG and BLE LG used in [42], we put DSP/RAM LG
even earlier and in the middle of BLE GP (Stage 3 ). In this way,
after legalizing and fixing DSP/RAMs, BLEs can move during a few
GP iterations to repair the wirelength degradation.

Further inspired by [24], bipartite matching is adopted in our
DSP/RAM LG. Nevertheless, different from their displacement-
driven window-by-window LG, our LG optimizes HPWL (with
displacement constraint) in the full chip scale.

In the bipartite graph G3(X3, Y3, E3) constructed, X3 are blocks
to be legalized and Y3 are all legal sites available. For each block
x ∈ X3, a number of (e.g., 10) sites nearest to it are candidates, the
cost of which is the HPWL when x is assigned to y with all other
blocks staying at GP locations. Different from the bipartite complete
graph used in [24], we limit the number candidate sites for each
block with three motivations. (1) The displacement in LG should
be limited in order to increase the fidelity of HPWL estimation,
which assumes all other blocks are not moved. In this way, the
final HPWL improvement may still not correspond to the edges by
exactly the same value, but the error is under control. (2) Limiting
displacement avoids significant disturbance to GP result. (3) The
runtime is improved by having significantly fewer edges.

After constructing the bipartite graph G3, its min-cost matching,
which can be solved by the min-cost network flow, is a LG solution
with minimized HPWL cost. However, there is no theoretical guaran-
tee that all blocks can be assigned, even though illegal cases were not
observed by us. To guarantee a legal solution, edges corresponding
to the assignment in a trial LG (by Tetris) are also added into E3.
Note that it will be different from Tetris itself since escape only
happens in overflowed regions.



0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2778058, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

(a) Horizontal alignment

BLE Switch Box

(b) Vertical alignment (c) No alignment

Fig. 11: Three cases with the same switch-box HPWL but different
alignment.

E. Congestion-Aware Two-Level Detailed Placement

In Stage 5 , multiple DP techniques are applied in both block (i.e.,
CLB, DSP and RAM) and BLE levels to improve wirelength and
routability. In general, two types of moves are used: (i) DSP/RAM
bipartite matching, and (ii) CLB/BLE global move/swap towards the
optimal region [55]. Both are performed in each round and many
rounds are carried out until no improvement.

DSP/RAM bipartite matching DP borrows the idea of DSP/RAM
LG in Section V-D with two modification. First, the initial block
positions are already legal positions instead of those generated by
GP. Therefore, the edges added by trial LG to guarantee a legal
solution are no longer needed, since the nearest sites of a block
definitely include the site that is solely occupied by itself. Second,
to avoid ruining the cell density optimized for routability, candidate
sites of a block cannot simultaneously (i) have congestion level
higher than the current site and (ii) be in the congested regions. The
first condition restricts the movement worsening congestion. There
is, however, no need to restrict movement in uncongested regions,
which is the purpose of the second condition.

In global move/swap, we move a CLB to an empty site within its
optimal region if there is. Otherwise, it is swapped with a CLB in its
optimal region if the HPWL can be improved. For a BLE, all CLB
sites in its optimal region are attempted by the incremental legality
checking in Section IV-B. Besides, same as bipartite matching DP,
moves that are not beneficial to routability are forbidden in global
move/swap.

The above DP moves can be purely HPWL-driven under the
congestion constraint. But the discrete nature of the switch-box-
based FPGA routing is not captured by HPWL. The situation is
demonstrated by Fig. 11. In all three cases, the HPWL (measured
by the grid of switch boxes) is exactly the same (i.e., two). However,
when the two pins are aligned horizontally or vertically, the connec-
tion probably will be routed via two switch boxes and a two-hop
wire segment (Fig. 11(a) and Fig. 11(b)). Without alignment, at least
three switch boxes and two wire segments are required (Fig. 11(c))).
Therefore, an alignment score is calculated for each candidate site,
besides the HPWL score. Basically, a unit score is added for each
alignment between the cell to move and its connected cell. Due to the
preciousness of routing resources in vertical direction as Section V-B
mentions, horizontal alignment is encouraged more by a larger unit
score. In our implementation, the score for horizontal alignment is
set to 2, while the vertical one is set to 1. By incorporating the
alignment score into DP objective, the placement thus has better
routability for the switch-box-based routing.

VI. SPEEDUP TECHNIQUES

We have made many optimizations for runtime compared to [50].
For instance, the slot assignment is separated from the legality
checking and deferred to the end of the flow, as mentioned in
Section IV-B. In this section we discuss two additional techniques
applied in our placer.

TABLE I: Statistics About ISPD 2016 Contest benchmarks

Design # LUT # FF # RAM # DSP # Net # Control
Set

FPGA-1 50K 55K 0 0 105K 12
FPGA-2 100K 66K 100 100 168K 121
FPGA-3 250K 170K 600 500 429K 1281
FPGA-4 250K 172K 600 500 430K 1281
FPGA-5 250K 174K 600 500 433K 1281
FPGA-6 350K 352K 1000 600 713K 2541
FPGA-7 350K 355K 1000 600 716K 2541
FPGA-8 500K 216K 600 500 725K 1281
FPGA-9 500K 366K 1000 600 877K 2541
FPGA-10 350K 600K 1000 600 961K 2541
FPGA-11 480K 363K 1000 400 851K 2091
FPGA-12 500K 600K 600 500 1111K 1281

In the quadratic programming of GP, we change the representation
of a large sparse matrix from the list of list (LIL) to the compressed
column storage (CCS) [56]. In LIL, an element can be easily queried,
modified, inserted and removed. But these operations are of no
need during the intensive computation of quadratic programming.
By ignoring the efficiency of the single-element query and update,
CCS stores a matrix in three compact arrays and need much less
storage. As a result, the critical low-level matrix operations (e.g.,
matrix-vector multiplication) are significantly accelerated, due to the
reduced memory bandwidth demand and cache miss rate.

In the optimal region calculation for DP, quickselect [57] replaces
sorting for finding the medians of x and y coordinates of pins. As
the optimal regions of all BLEs and CLBs need to be obtained
in each DP round (for global move/swap), the runtime of optimal
region calculation is originally a bottleneck in DP. The best sorting
algorithms can achieve O(n logn) complexity both in worst case
and in average. Despite O(n2) in the worst case, quickselect has
much better average performance of O(n) with small constant.

VII. EXPERIMENTAL RESULTS

To evaluate our proposed method, the algorithms are implemented
in C++. Patoh [58], lpsolve [59] and boost graph library [60] are used
for solving hypergraph partitioning, ILP and min-cost network flow
respectively.

Experiments were performed on a 64-bit Linux workstation with
Intel Xeon 3.4 GHz CPU and 32 GB memory. Even though RippleF-
PGA can be multi-threading, only single thread is used here for a fair
comparison with the previous placers. Benchmarks are from ISPD
2016 Routability-Driven FPGA Placement Contest [5], the statistics
of which is shown in TABLE I, where a control set means a kind of
configuration of CK, SR and CE. The routing evaluation is conducted
by Xilinx Vivado.

A. Effectiveness of Our Techniques

TABLE II shows the strength our new legality checking and
slot assignment scheme compared to [50]. First, the matching-base
legality checking not only is optimal but also increases flexibility,
which is evidenced by the 6 % higher success rate in BLE LG
(corresponding to Algorithm 2 line 11). Second, without false alarm,
some scenarios (e.g., removing a BLE out of a CLB) need no legality
checking now, which further reduces times of invoking incremental
legality checking. Third, deferring slot assignment to the end itself
also benefits the runtime. In general, both wirelength and runtime
are improved. Besides, note that only a small ratio of CLBs are
difficult instances and require solving by ILP, making the whole slot
assignment very efficient.

Fig. 12 illustrates the runtime breakdown of RippleFPGA, where
we can see that GP dominates. Actually, before the implementation
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TABLE II: Impact of Matching-Based Legality Checking and ILP-Based Slot Assignment

Design

RippleFPGA w/ Legality Checking in [50] RippleFPGA
Wirelength Impact Runtime Impact Wirelength Impact Runtime Impact
% LG

Success
Routed

Wirelength
Legality Checking Total

Runtime
% LG

Success
Routed

Wirelength
Legality Checking Slot Assignment Total

Runtime# Call Runtime # Call Runtime % ILP Runtime
FPGA-1 32.16% 350749 2716687 2 34 43.40% 352628 438418 0.3 3.99% 1 31
FPGA-2 43.39% 645618 3739596 3 61 46.11% 645400 563878 0.5 3.39% 1 58
FPGA-3 10.31% 3333579 13553726 10 212 10.57% 3262106 4709863 3 1.33% 2 203
FPGA-4 9.37% 5555391 14386077 10 237 9.35% 5509661 5500975 4 0.54% 2 227
FPGA-5 23.18% 9908559 13121108 11 284 23.59% 9968955 4255253 3 0.66% 2 273
FPGA-6 2.72% 6270243 37533293 21 447 2.77% 6180104 21860787 12 0.89% 3 437
FPGA-7 2.33% 9672488 36735440 19 488 2.40% 9639639 26722085 16 1.49% 4 499
FPGA-8 39.59% 8170991 14590118 13 439 39.83% 8156951 3521360 3 0.27% 3 421
FPGA-9 4.04% 12472932 36144354 23 625 4.54% 12305192 18795015 11 1.79% 6 594
FPGA-10 † † † † † 1.80% 7139694 43532711 21 3.78% 13 673
FPGA-11 4.06% 11147130 41969816 28 571 4.25% 11022815 21019965 12 1.74% 5 554
FPGA-12 † † † † † 4.86% 7363451 19381135 11 5.04% 14 665
Avg. Ratio 0.943 1.006 3.256 3.604 1.039 1.000 1.000 1.000 1.000 - - 1.000
†Cannot legalize all BLEs
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Fig. 12: Runtime breakdown of RippleFPGA.

TABLE III: Routed Wirelength Impact of Partition Allocation (PA)
and Congestion-Driven GP (CGP)

Design Baseline PA CGP PA+CGP
FPGA-1 356314 353516 356081 352628
FPGA-2 669133 649051 655740 645400
FPGA-3 3532052 3277033 3533351 3262106
FPGA-4 5556177 5508595 5531058 5509661
FPGA-5 * * 10120061 9968955
FPGA-6 6549187 6238933 6521672 6180104
FPGA-7 9723248 9500233 9933324 9639639
FPGA-8 8423217 8122288 8409769 8156951
FPGA-9 12050941 12044246 12104565 12305192
FPGA-10 7820378 7308750 7682063 7139694
FPGA-11 11172550 10672421 11528235 11022815
FPGA-12 8464954 * 8105645 7363451
Avg. Ratio 1.043 0.997 1.038 1.000

*Unroutable placement

optimization on GP engine, both GP runtime percentage and total
runtime were significantly larger. For example, the previous sparse
matrix storage scheme of list of list (LIL) is much more timing-
consuming than compressed column storage (CCS), as Fig. 13 shows.

TABLE III shows the effectiveness of two routability optimization
techniques, routing-architecture-aware partition allocation (PA) and
congestion-driven GP (CGP). PA improves the routed wirelength for
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Fig. 13: Runtime impact of sparse matrix representation: compressed
column storage (CCS) is more efficient than list of list (LIL).

TABLE IV: Routed Wirelength Impact of Bipartite-Matching-Based
DSP/RAM LG and DP

Design Neither LG DP Both
FPGA-1 352628 352628 352628 352628
FPGA-2 656531 645384 645877 645400
FPGA-3 3429419 3268983 3278954 3262106
FPGA-4 5665941 5514118 5526963 5509661
FPGA-5 10087236 10009207 9944421 9968955
FPGA-6 6279386 6191009 6206049 6180104
FPGA-7 9760486 9643013 9673528 9639639
FPGA-8 8206043 8159135 8151310 8156951
FPGA-9 12386444 12303073 12326051 12305192
FPGA-10 7214541 7141872 7142227 7139694
FPGA-11 11084104 11021053 11035423 11022815
FPGA-12 7429943 7362895 7386437 7363451
Avg. Ratio 1.015 1.001 1.002 1.000

all benchmarks with only one exception (PA+CGP v.s. CGP for
FPGA-9) by resolving the problem of unbalanced routing supply.
Even for FPGA-9, there is still improvement by using PA only,
compared with the baseline. For CGP, it makes all designs routable.
Even though the current CGP worsens wirelength on some designs,
it probably would not be the case if the global router of Vivado can
be accessed for congestion estimation.

The effectiveness of bipartite-matching-based method for
DSP/RAM LG and DP is illustrated by TABLE IV. In the baseline
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TABLE V: Routed Wirelength Comparison with State-of-the-Art FPGA Placers on ISPD 2016 Benchmarks

Design 1st Place 2nd Place 3rd Place [50] [24] RippleFPGA
Wirelength Ratio Wirelength Ratio Wirelength Ratio Wirelength Ratio Wirelength Ratio Wirelength Ratio

FPGA-1 † † 379932 1.077 581975 1.650 362563 1.028 384709 1.091 352628 1.000
FPGA-2 677877 1.050 679878 1.053 1046859 1.622 677563 1.050 652690 1.011 645400 1.000
FPGA-3 3223042 0.988 3660659 1.122 5029157 1.542 3617466 1.109 3181331 0.975 3262106 1.000
FPGA-4 5628519 1.022 6497023 1.179 7247233 1.315 6037293 1.096 5504083 0.999 5509661 1.000
FPGA-5 10264769 1.030 * * * * 10455204 1.049 10068879 1.010 9968955 1.000
FPGA-6 6330179 1.024 7008525 1.134 6822707 1.104 6960037 1.126 6411247 1.037 6180104 1.000
FPGA-7 10236827 1.062 10415871 1.081 10973376 1.138 10248020 1.063 10040562 1.042 9639639 1.000
FPGA-8 8384338 1.028 8986361 1.102 12299898 1.508 8874454 1.088 8113483 0.995 8156951 1.000
FPGA-9 * * 13908997 1.130 * * 12954350 1.053 13616625 1.107 12305192 1.000
FPGA-10 † † † † * * 8564363 1.200 8866049 1.242 7139694 1.000
FPGA-11 11091383 1.006 11713479 1.063 * * 11226088 1.018 10834629 0.983 11022815 1.000
FPGA-12 9021768 1.225 † † * * 8928528 1.213 8246410 1.120 7363451 1.000

Avg. 1.048 1.105 1.411 1.091 1.051 1.000
*Unroutable placement †Placement error

TABLE VI: Runtime (Seconds) Comparison with State-of-the-Art FPGA Placers on ISPD 2016 Benchmarks

Design 1st Place 2nd Place 3rd Place [50] [24] RippleFPGA
Runtime Ratio Runtime Ratio Runtime Ratio Runtime Ratio Runtime Ratio Runtime Ratio

FPGA-1 † † 118 3.862 97 3.175 74 2.422 215 7.036 31 1.000
FPGA-2 435 7.689 208 3.677 191 3.376 167 2.952 399 7.053 57 1.000
FPGA-3 1527 7.600 1159 5.768 862 4.290 1037 5.161 1555 7.739 201 1.000
FPGA-4 1257 5.608 1449 6.464 889 3.966 621 2.770 1289 5.751 224 1.000
FPGA-5 1266 4.691 * * * * 1012 3.750 1237 4.584 270 1.000
FPGA-6 2920 6.879 4166 9.815 8613 20.291 2772 6.531 2827 6.660 424 1.000
FPGA-7 2703 5.481 4572 9.271 9196 18.647 2170 4.400 2588 5.248 493 1.000
FPGA-8 2645 6.229 2942 6.929 2741 6.456 1426 3.358 2705 6.371 425 1.000
FPGA-9 * * 5833 9.901 * * 2683 4.554 3407 5.783 589 1.000
FPGA-10 † † † † * * 5555 8.555 4091 6.300 649 1.000
FPGA-11 3227 5.953 7331 13.524 * * 3636 6.708 3267 6.027 542 1.000
FPGA-12 4539 6.986 † † * * 9748 15.004 4625 7.119 650 1.000

Avg. 6.346 7.690 8.600 5.514 6.306 1.000
*Unroutable placement †Placement error

[50], DSP/RAM blocks are manipulated by Tetris-like LG and global
move/swap in DP. It can be seen that the bipartite-matching-based
LG and DP help the routed wirelength by 1.5%.

B. Comparison with State-of-the-Art FPGA Placers

TABLE V and TABLE VI show our routed wirelength and runtime
compared with [24], [50] as well as the winners of ISPD 2016
Contest. The result of contest winners comes from the contest
organizer. When we test the binary of the second place on our
machine, exactly the same wirelength and similar runtime result can
be reproduced, in spite of the different machine configurations.

For the routed wirelength, RippleFPGA not only generates legal
and routable solutions for all benchmarks but also has the best
average wirelength. To be more specific, our wirelength is in average
5.1% better than the second best [24]. Note that among all, FPGA-10
is the most difficult to pack/legalize, on which, all winners of the
contest failed to produce legal and routable placement. Actually,
FPGA-10 has the largest number of FFs and control sets (TABLE I),
which also results in the lowest success rate in LG for RippleFPGA
(TABLE II). On this particular design, RippleFPGA outperforms
other placers the most (24.2% better than the second [24]). That is,
our approach is much better on difficult designs. This demonstrates
the strength of the stair-step flow and implicit CLB packing, which
smoothly pack soft BLEs into CLBs.

For the runtime, as the fastest on all benchmarks, RippleFPGA
outperforms the second fastest placer with a 4.76× speedup. For
the largest design (FPGA-12), the runtime is reduced from hours
to minutes, which is highly desirable to the field programming need
of FPGA. The runtime superiority shows the effectiveness of our
speedup techniques illustrated by Section VI.

VIII. CONCLUSION

Facing the increasing complexity and scale of modern FPGAs,
the proposed RippleFPGA integrates FPGA packing and placement
together through a set of novel techniques, such as a smooth stair-
step flow, implicit CLB packing, and two-level DP. The stair-step
flow consists of six stages: (i) flat GP, (ii) soft BLE packing,
(iii) BLE GP, (iv) implicit CLB packing, (v) two-level DP, and
(vi) slot assignment in CLB. To improve routability, both ASIC-
like congestion alleviation methods and FPGA-routing-architecture-
aware optimization techniques are applied. The experimental results
show that RippleFPGA achieves the best routed wirelength and
runtime compared to all the state-of-the-art academic placers.
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