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Simultaneous Reconnection Surgery Technique of
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Abstract—In global routing, both timing and routability
are critical criteria to measure the performance of a design.
However, these two objectives naturally conflict with each
other during routing. In this work, we proposed reconnection
approaches to fix timing. We first formulated a quadratic
program (QP), which adjusts routing topologies of all the nets
by only reconnecting critical sinks and takes congestion into
consideration to trade off timing and routability objectives. A
machine learning-based technique is applied to accelerate our
algorithm, which offers a fast and effective way to solve the
problem. By exploring more reconnection candidates, we then
formulated a QP to reconnect any sink of a net and utilized
a multi-label classifier to accelerate the process. Experimental
results on ICCAD 2015 benchmarks show that our algorithms
can achieve timing improvement with no significant degradation
in routability and wirelength. With machine learning-based
acceleration (MLA), our results can be obtained in almost
negligible runtime.

I. INTRODUCTION

With the development of semiconductor industry, there is
an increasing demand on producing high performance and
power efficient chips [1]. A variety of technologies at different
design levels, such as architectural, circuit and material, have
been come up to improve the performance of the design.
Due to the delay of the transistors, the interconnect draws
attentions over years [2]. For example, in the stage of circuit
design, demand on improved routing strategies to meet timing
requirements keeps increasing [3].

Since global routing plays an important role in both the
placement and routing phases, there are numerous previous
works on global routing. NCTUgr [4] began with rectilinear
minimum spanning tree (RMST) topologies and utilized the
rectilinear steiner minimum tree (RSMT) topologies to guide
the following monotonic routing and negotiation-based rip-up
and reroute. NTHURoute [5] also decomposed nets to two-
pin nets based on routing tree topologies. Next, it utilized a
rip-up and reroute approach, based on the congested region
identification, to further improve routability. FastRoute [6]
first built routing trees for all the nets and then adjusted
the routing edges to reduce congestion. It then performed
multi-source multi-pin maze routing and 3-bend routing with
an adaptive cost function. MaizeRouter [7] initialized tree
construction by FLUTE [8], which is an approach to build
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RSMT. It then shifted and retracted the edge to optimize
congestion. Followed by layer assignment, the maze routing
was performed. BoxRouter [9] decomposed nets based on the
minimum steiner tree construction and it proposed an Integer
Linear Programming (ILP) routing and an adaptive maze
routing to iteratively reduce congestion. Overall, these global
routers achieved good performance in terms of wirelength
and routing congestion. However, timing is not considered in
these routers.

Besides congestion driven routers mentioned above, some
works optimized timing and congestion together. The
work [10] proposed a global routing approach to incorporate
both congestion and timing optimization. It assigned a routing
tree topology to each net and adjusted soft edge, a non-
horizontal and non-vertical edge, to meet the timing con-
straint. It also slided steiner points to achieve better timing.
However, it took tens of seconds to handle at most 400
nets, which may not be fast enough for current designs. In
addition, it targeted at small number of module nets instead
of large number of standard cell nets. The unified timing
and congestion optimizing (UTACO) [11] algorithm adopted
a shadow price mechanism which considered timing and
congestion as the sum of the price. It first built the minimum
wire length steiner tree and performed rip-up and reroute by
optimizing the price of congestion and timing. However, it
modeled the delay of each net individually which may neglect
interaction among adjacent nets because actual gate delay is
affected by values from upstream and downstream nets. The
work [12] targeted at optimizing Chemical-Mechanical Pol-
ishing(CMP) and timing in global routing besides congestion.
It modeled timing by a guide of wire density. However, the
gate model it considered is the lumped resistance model. The
work [13] proposed a routing algorithm that considered timing
optimization, buffer insertion and power reduction. It first
constructed minimum steiner trees and additional detoured
trees and buffered trees are then built to reduce congestion
and timing. Next, it formulated an ILP to decrease power
consumption. However, the buffer tree construction was time
consuming and only wire delay was optimized without gate
delay considered.

In most global routers, a tree topology will be assigned to
each net, better timing can be achieved by considering timing
in construction of the routing tree topologies. Several algo-
rithms [14] [15] are proposed to build timing aware routing
trees to achieve good performance on balancing net and gate
delay. However, most of them adopt simple lumped resistance
model as their gate delay model, which is inaccurate and
inadequate for modern designs. Moreover, modern gate delay
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model requires that tree topologies should not be optimized
individually. Hence, in timing aware global routers, methods
are needed to capture delay more accurately and to consider
the topologies of all the nets simultaneously.

As addressed in [16], machine learning (ML) based ap-
proaches have been successfully applied in physical design to
improve design performance and reduce design cost of new
products in advanced nodes. In general, ML application in
physical design aims at modeling new correlation mechanisms
and making the design flow more predictable. However, the
complicated design characteristics and design flow make it
difficult for designers to achieve their goals. Designers take
efforts to figure out useful information from the design, which
requires experience and knowledge on physical design [17].
There are some works [18] [19] using ML techniques to
improve their performance by extracting useful information
from the circuit. They could quickly produce similar quality
solution, which would otherwise take a long time to be gener-
ated. The advantage of ML is fast prediction even though the
off-line training process may take a long time. In our work,
the fast prediction of ML will be utilized to accelerate the
traditional optimization process and useful information will
be extracted by analysing the design characteristics.

In this work, we propose algorithms to adjust the routing
topologies of all the nets to fit timing from a global per-
spective and consider routing congestion simultaneously. Our
contributions are summarized as follows:

• To optimize the tree topologies globally, a QP is formu-
lated to determine how to adjust the most critical sink
connection to optimize timing and congestion.

• We study various circuit properties and identified those
that contribute to timing. Later, these features will be
used to accelerate the QP-based tree surgery technique
by a machine learning-based technique.

• In order to obtain better solution quality, multiple sinks
of each net are considered as our reconnection candi-
dates. Compared with the most critical sink connection,
it can achieve better performance on timing.

• A multi-label classifier is proposed to accelerate our
multiple sink QP solver in order to produce solution
efficiently.

• Experimental results show that we can improve timing
of the design significantly with small increase in routing
congestion.

The remaining of this paper is organized as follows.
Section II introduces basic knowledge in timing analysis.
Section III defines Critical Sink Reconnection Surgery Prob-
lem (CSRSP) and Multiple Sink Reconnection Surgery Prob-
lem (MSRSP). Section IV contains details of our algorithms
on solving CSRSP, including quadratic programming based
Tree Surgery Technique (QPTST) and machine learning-
based acceleration technique (MLA). Section V explains how
we build a QP solver to solve MSRSP and utilize a multi-
label classifier to improve the optimization quality. Section VI
shows the experimental results and we finally conclude the
work in Section VII.
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Fig. 1: Delay in the circuit.

TABLE I: Variable notations in Section II.
dA→B interconnect delay between node A and node B
gdA→B gate delay from input A to output B
capi total capacitance of net i (including sinks capacitance)
slewA slew of node A
Ck lumped capacitance at node k

TABLE II: Gate Delay Lookup Table.
`````````capacitance

slew
x1 x2 x3

y1 z11 z12 z13
y2 z21 z22 z23
y3 z31 z32 z33

II. PRELIMINARY

A simple circuit structure is shown in Figure 1(a). It
consists of circuit elements, IO pins and interconnections.
The circuit elements can be combinational logic elements or
sequential elements. When signals travel from the primary
inputs to the primary outputs of the circuit, the circuit
elements and their interconnections will have delays which
affect the performance of the circuit. In the following parts,
some background is presented. The notations used are shown
in Table I.

A. Circuit Element Delay

A circuit element shown in Figure 1(b) is extracted from
Figure 1(a) which is marked red. It consists of input A,
input B and output Y , which is the source gate of net k.
Based on a nonlinear gate delay model (NLDM), gate delay
gdA→Y is estimated based on a 2-dimensional table shown
in Table II with inputs slew slewA and capacitance capk.
Generally, given specific index values x and y, gate delay
can be estimated by Equation (1). Assuming x1 < x < x2
and y1 < y < y2, solutions of the bilinear interpolation can
be computed as in Equation (1) and the coefficients can be
obtained by Equation (2) using z11, z12, z21 and z22. Details
of the calculation are shown in [20].

L(x, y) = a0 + a1 · x+ a2 · y + a3 · x · y (1)
1 x1 y1 x1y1
1 x1 y2 x1y2
1 x2 y1 x2y1
1 x2 y2 x2y2



a0
a1
a2
a3

 =


z11
z12
z21
z22

 . (2)
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B. Interconnect Delay

For interconnect delay, an example is shown in Figure 1(c).
Net i consists of source S and sinks T1 and T2. Delay dS→T1

can be obtained by an RC model as shown in Figure 1(d). π
model is used to represent a wire. Interconnect delay dS→T1

is computed by Equation (3),

dS→T1
=

∑
k∈N

Rk→T1
· Ck, (3)

where N is the set of sinks in net i, Rk→T1 is the total
resistance of the common path between the path from S to k
and the path from S to T1, and Ck is the lumped capacitance
at node k.

C. Slew Calculation

We make use of the slew calculation as proposed by [20].
As shown in Figure 1, the slew is transited from S to T1 and
T2. The output slew slewT1

at T1 is calculated by Equation (4)
and it shows that the output slew at a sink is related to the
slew at the source slewS and the impulse response on T1
impT1

.

slewT1
≈

√
slew2

S + imp2T1
, (4)

impT1
≈

√
2 · βT1 − d2S→T1

, (5)

βT1
=

∑
k∈N

Rk→T1
· Ck · dS→k. (6)

As shown in Figure 1, slew propagated across a gate is
calculated as follows: slew slewY is obtained by assuming the
worst-slew propagation max{slew′A, slew′B}, where slew′A
is obtained from the lookup table using slewA and capi. It is
similar to the calculation of the circuit element delay. slew′B
is calculated in the same way.

D. Timing Analysis

Generally, timing analysis is propagated from the primary
input to the output to obtain the actual arrival time (aat) and
from the output to the input to obtain the required arrival
time (rat). We quantify the timing of a circuit at each node
by the term slack which is computed by slack = rat− aat.
Static Timing Analysis (STA) [20] is always performed to
check the timing of the design.

E. Global Routing

In global routing, design is divided into an N ×N routing
grid. Each edge e of the routing grid has capacity c(e), which
is related to the number of available tracks of each edge.
Demand d(e) of an edge e is calculated by the number of
interconnection that occupies the edge e. Overflow is induced
by condition that d(e) > c(e). Global routing aims at reducing
overflow of the design.

In order to improve timing, our approach may recon-
nect some interconnections which may increase congestion.
Hence, our optimization flow will consider the congestion
issue as well.

III. PROBLEM FORMULATIONS

Given the placement of a design, nets are routed and
timing information are obtained by STA. Our objective is
to maximize the total negative slack (TNS) by adjusting
the routing topologies. The technique is called Tree Surgery
Technique (TST). The proposed TST is to reconnect pins
of nets to reduce TNS. The following two problems are
formulated in order to achieve our goal by different TSTs.

Selected Net Candidates
Reconnect the 
critical sink to 
the root

critical

(a) Critical Sink Reconnection Surgery Problem (CSRSP)

Selected Net Candidates
Reconnect selected
sink to the root

critical

or

(b) Multiple Sinks Reconnection Surgery Problem (MSRSP)
Fig. 2: Examples of problem formulation

A. Critical Sink Reconnection Surgery Problem (CSRSP)

In CSRSP, TST tries to reconnect the critical sink shown in
Figure 2a to maximize TNS by reducing wire delay and gate
delay on the critical path, which is formulated as Equation (7).

max TNS,
s.t. xi ∈ {0, 1} ∀i ∈ Nc,

(7)

where xi denotes whether the most critical sink of each net
i ∈ Nc is reconnected and Nc is a set of net such that any net
i ∈ Nc with Pi sinks should satisfy the following constraints:

jix = arg min
l∈Pi,slackl<0

slackl, (8)

parent[jix] 6= si, (9)

where jix is the sink in net i whose slack is the most negative
and the parent of jix is not the source si. If the slack of
every sink in net i is positive, the routing topology of net i
will remain unchanged. Equation (9) requires that the sink jix
with the worst negative slack is not connected to the root. It
may then be possible to connect it to the root to improve the
timing.

The explicit formulation of our objective is explained in
Section IV.
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B. Multiple Sinks Reconnection Surgery Problem (MSRSP)

In MSRSP, TST tends to reconnect one pin among all sinks
in each critical net so that TNS can be maximized shown in
Figure 2b. Its formulation is shown as Equation (10).

max TNS,

s.t.

ni∑
k=0

xik ≤ 1 ∀i ∈ Nc,

xik ∈ {0, 1} ∀k ∈ ni, i ∈ Nc

(10)

where Nc is a set of nets as defined in Section III-A, ni
denotes number of sinks of net i and xik denotes sink k of
net i is reconnected or not.

The explicit formulation of our objective is explained in
Section V.

IV. TREE SURGERY TECHNIQUE (TST) ON CSRSP

TST is an approach to modify the tree structure, such as
reconnection. TST is first formulated as a QP to maximize
the total negative slack while congestion is also considered in
the formulation. We then extract circuit properties which can
influence timing and a machine learning based acceleration
method is further proposed to speed up the QP-based TST.
The notations of variables in this section are listed in Table III.

A. QP-based TST (QPTST)

1) Timing Optimization: In order to achieve timing clo-
sure, STA is used to detect the timing problem of a design. It
measures slack (slackpo = ratpo − atpo) at each timing end
point po ∈ PO, where PO is a set of primary outputs and
register data ports. In STA, timing failure can be detected if
the slack of a timing end point is negative (slackpo < 0). In
order to reduce timing failure, our objective is to maximize
TNS at critical timing endpoints, which is formulated in
Equation (11). POn denotes the set of timing end points with
negative slack.

max
∑

po∈POn

ratpo − aatpo. (11)

The negative slacks of POn is mainly related to the nets
with negative slack sinks, which are called critical nets Nc.
Hence, in this work, we will improve the slack of critical
nets instead of directly optimizing the slack on the primary
outputs, which is shown in Equation (12).

max
∑
i∈Nc

∑
l∈P c

i

ratl − aatl, (12)

where P c
i is the set of critical sinks of net i. Since simulta-

neously optimizing all the critical sinks of a net is hard to
achieve and may cause congestion, we further simplify the
problem such that only the most critical sink of each critical
net will be considered and formulate it as Equation (13).

max
∑
i∈Nc

ratjix − aatjix . (13)

Since the slack value on one critical timing path is the
same, for each net, optimizing the slack of the source is

equivalent to optimize the slack of the most critical sink.
Hence, Equation (13) can be transformed into Equation (14).

max
∑
i∈Nc

ratsi − aatsi

= max
∑
i∈Nc

ratjix − dsi→jix
− aatl − gdl→si

, (14)

where dsi→jix
is the net delay from si to jix, gdl→si is the

gate delay and the input pin l of the gate containing node si
determines the actual arrival time of source si. By assuming
ratjix and aatl are constant, we can further simplify the
problem as Equation (15).

min
∑
i∈Nc

dsi→jix
+ gdl→si

= min
∑
i∈Nc

dsi→jix
+ L(capi, slewl)

, (15)

where gate delay can be represented as L(capi, slewl).
In this work, we minimize delay dsi→jix

in Equation (15)
by reconnecting the critical sink jix directly to its source si.
However, reconnecting all the nets Nc will increase total
capacitance capi of each net i due to longer wirelength,
which will increase the gate delay L(capi, slewl). In order to
maximize the delay reduction dsi→jix

+ L(capi, Slewl), the
set of net that will be reconnected is found by Equation (16).

max
n∑

i=1

(β ·∆Li + ∆dsi→jix
· xi),

s.t. xi = {0, 1} ∀i ∈ Nc,

(16)

where xi is a binary variable indicating whether net i is
reconstructed. β is a user defined parameter. ∆dsi→jix

is the
difference of interconnect delay on the path from the critical
sink jix to its source si before and after reconnecting it to the
root, which is computed by Equation (17).

∆dsi→jix
= dosi→jix

− dsi→jix
. (17)

∆Li implies how much gate delay at node si can be reduced,
which is computed by Equation (18).

∆Li =L(capoi , slew
o
l )− L(capi, slewl)

=a1 · (capoi − capi) + a2 · (slewo
l − slewl)

+ a3 · (capoi · slewo
l − capi · slewl)

, (18)

where L(capoi , slew
o
l ) and L(capi, slewl) are the gate delay

before and after reconnection respectively. The value of ∆Li

is determined by reconnection of net i and net j, where net j
influences the input slew at node l. It is easy to see that ∆Li

can be rewritten in the form of summation of terms with xi
and xj as in Equation (19), where a0, a1, a2 and a3 can be
obtained as shown in Section II-A.

∆Li =(a1 + a3 · slewo
l ) ·∆capi · xi

+ (a2 + a3 · capoi ) ·∆slewl · xj
− a3 ·∆capi ·∆slewl · xi · xj

(19)

With Equation (16) and Equation (19), we can formulate
a QP to determine which net to be reconnected such that the
total negative slacks is optimized.
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TABLE III: Variable notations in Section IV-A.
si the source of net i
jix the sink of net i whose slack is negative and the worst
l the input pin of the gate of si which affects actual arrival time of

si
j the net of input pin l

L(capi, slewl) gate delay gdl→S from input l to source node S of net i
do
si→jix

delay from si to jix before reconnection on net i

dsi→jix
delay from si to jix after reconnection on net i

∆dsi→jix
delay difference before and after reconnection on net i, do

si→jix
−

dsi→jix
capoi lumped capacitance of node i before deciding whether performing

reconnection on net i
capi lumped capacitance of node i after deciding whether performing

reconnection on net i, capoi − ∆capixi

∆capi capacitance changed when reconnection is performed on net i
slewo

l slew of pin l before deciding whether performing reconnection on
net j

slewl slew of pin l after deciding whether performing reconnection on net
j, slewo

l − ∆slewlxj

∆slewl slew changed when reconnection is performed on net j
∆Li gate delay difference of source s in net i considering reconnection

of net i and net j

2) Congestion Optimization: When we improve the timing
by reconnecting sinks to their sources, routing congestion may
be increased. Hence, routability needs to be considered when
we optimize timing by reconnection. The general idea is to
avoid reconnecting the critical sink which may go through
congested routing regions.

More specifically, a penalty factor of each critical sink
is obtained and such penalty will be added to the objective
function in order to consider routability. The penalty factor
of each critical sink is calculated from the overflow values
of its source, which can be obtained after global routing. To
honor our original tree topologies, both the steiner points and
pins of each tree are treated as pins in the global router. How
we calculate the overflow penalty poi of critical sink i is
illustrated by an example given in Figure 3, where a, b, c are
the possible locations of the critical sink and s is the source.
For each critical sink i, poi can be obtained from the overflow
values of its source, which are oeu , oer , oed and oel in this
example. There are two kinds of situations as follows:

1) The routing grid of the critical sink is either horizontal
or vertical to the one of its source, such as critical sinks
a, c.

2) Otherwise, such as critical sinks b.

For the first situation, poi is equal to the overflow of the edge
cut through by the connection between the sink and source.
For the other situation, poi is equal to the maximum overflow
of the edges cut through by the bounding box of the sink and
source. In Figure 3, the overflow penalties of a, b and c are
oeu , max(oeu , oer ) and oer respectively.

By adding overflow penalty poi into the objective function

a 

b 

c 
s 

𝑒𝑢 

𝑒𝑑  

𝑒𝑙  𝑒𝑟  

Fig. 3: An example of how to calculate potential routing overflow.

as shown in Equation (20), we can optimize timing and
congestion simultaneously.

max
n∑

i=1

(β ·∆Li + (∆ds→jix
+ α · poi) · xi)

s.t. xi = {0, 1} ∀i ∈ Nc

(20)

B. Machine Learning-based Acceleration (MLA)
In this section, we first study how the circuit properties will

affect the reconnection decisions. For example, the critical
sink may have a large detour to the source in the original tree
topology and the slew of the critical sink will be improved a
lot after reconnection. We will select some of these properties
as features and use a classification approach to speed up
QPTST. In the following parts, we assume each net i has
n sinks and a source si and sink jix is the most critical one.

The circuit properties we study can be categorized into
three types: (1) slew and delay related features as shown in
Table IV, (2) distance and length related features as shown in
Table V, and (3) physics related features as shown in Table VI.
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Fig. 4: Feature Importances.
TABLE IV: Delay And Slew Related Features.

DiffTopSlew (DiffTopDelay) The difference of sink jix slew (delay) and the
largest slew (delay) of net i except slew (delay)
of sink jix.

IsWorstSlew (IsWorstDelay) Whether slew (delay) of sink jix is worst in net
i.

WorstSlew (WorstDelay) Value of the worst slew (delay) of net i.
TargetSinkSlew (TargetSinkDelay) The slew (delay) of sink jix.

TargetDeltaSlew (TargetDeltaDelay) The difference slew (delay) of sink jix before and
after connecting to root.

CommonPathDelay The delay accumulated on branches which con-
nects s to jix path.

TABLE V: Distance And Length Related Features.
SourceSinkPathDist The path length from source to the sink jix on the routing tree.

SourceSinkDist The Manhattan distance between the position of source s and
sink j.

TABLE VI: Physics Related Features.
TotalNetCap The total capacitance of net i.
TotalNetRes The total net resistance.

a0,a1,a2 and a3 The coefficients of lookup table function of source s.

Since the ranges of the values of the extracted features f
vary a lot, Equation (21) is used for normalization.

f ′ =
f −min(f)

max(f)−min(f)
, (21)

where max(f) and min(f) are obtained in the training set.
Large number of features may cause inefficiency and

overfitting. Hence, we need to reduce the number of features
and features are selected according to their importance. The
importances of features are obtained by a machine learning
model. As shown in Figure 4, features are ranked according
to their importance produced by Random Forest (RF) [21].

After feature selection and preprocessing, we formulate our
MLA problem as a classification problem. To be specific, a
classifier is applied to each critical net to decide whether it
should be reconnected and the results of QPTST are used
as the golden results. We use the RF as our classification
model and the top 15 important circuit properties shown in
Figure 4 are selected as final features. If congestion is also
considered, factor poi of each net i is added to our features
during classification.

V. MULTIPLE SINKS OPTIMIZATION ON MSRSP
In Section IV, only the most critical sink in each net is

considered to be reconnected. However, only critical sink

reconnection may restrict the improvement of solution quality.

A𝑇: 30.545

b
A𝑇: 34.553

A𝑇: 34.741a

𝑆𝑜𝑢𝑟𝑐𝑒

𝑁𝑜𝑛 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑆𝑖𝑛𝑘

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑆𝑖𝑛𝑘

(a) Net

A𝑇: 34.59

b

A𝑇: 30.64

A𝑇: 34.59a

(b) Reconnection on the critical
sink

b
A𝑇: 33.255

A𝑇: 30.874

A𝑇: 32.689a

(c) Reconnection on a non critical
sink

Fig. 5: An Example of Reconnection

As shown in Figure 5, a routed net extracted from a design
with arrival time information is shown in the Figure 5a. AT
denotes arrival time. Pin b is a critical sink and net delay on
the path from source to critical sink b is 34.553− 30.545 =
4.008. Our target is to improve its timing. If only the critical
sink is considered to be reconnected, arrival time could be
improved as shown in Figure 5b. Due to wirelength increased
by reconnection, total capacitance of that net is also increased.
Therefore, gate delay at source is increased and the arrival
time at source is also increased. Net delay on the path from
source to critical sink is reduced to 3.95 by removing subtree
of the path. Overall, arrival time of critical sink is increased
and such reconnection may not be adopted. However, shown
in Figure 5c, non-critical sink is reconnected. With 0.329 gate
delay increased, net delay of the path from source to critical
sink b is only 2.381. The timing of critical sink b is improved
while even timing of non critical sink a is also improved.
Observed from Figure 5, more possibilities considered during
reconnection optimization may lead to better performance.

In order to obtain better timing and keep routing topology
less change, a more flexible optimization is to take all pins
of a net as reconnected candidates and select at most one pin
of each net to be reconnected, as formulated in Section III-B.

The MSRSP problem is quite different from the other.
Approaches in section IV cannot be applied directly to solve
the problem. The proposed algorithm in Section IV can be
extended to solve the MSRSP problem, as shown in Figure 6.
A QP is formulated to solve the problem described in Sec-
tion III-B. Then, A multi-label classification based algorithm
is proposed to accelerate the QP optimization approach.

A. Multiple Sinks Optimization QP
According to the deduction in Section IV-A,

max
∑

i∈Nc
∆dsi→jix

+ ∆L(capi, slewl) formulated in
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Fig. 6: The flow of Section V

Equation (15) is our objective and the purpose is to
maximize the delay reduction on the critical paths before
and after reconnection in the design. In section IV-A, net
delay reduction ∆dsi→jix

in Equation (15) is minimized by
reconnecting the critical sink jix directly to its source si.
When more sinks are considered to be reconnected, delay
reduction ∆dsi→jix

and gate delay reduction ∆L will be
expressed by considering these sinks reconnection. The
explicit formulation is shown in Equation (22).

max

n∑
i=1

(β ·∆Li +

ni∑
k=0

∆dksi→jix
xik),

s.t.

ni∑
k=0

xik ≤ 1 ∀i ∈ Nc,

xik = {0, 1} ∀k ∈ ni,∀i ∈ Nc,

(22)

Assume there are ni variables for each net i, representing ni
sinks of net i. Variable xik(∀k ∈ ni) is introduced to represent
whether pin k in net i is reconnected or not. Constraint∑ni

k=0 xik ≤ 1 denotes at most one sink in each net could
be reconnected. In objective function, ∆dksi→jix

denotes the
delay change in the path from sink jix to source s when sink
k of net i is reconnected.

Accordingly, ∆capi = ∆capikxik represents capacitance
variation of net i.

Derived from ∆capi and Equation (19), ∆Li can be written
as:

∆Li =(a1 + a3slew
o
i )

ni∑
k=0

∆capik · xik+

(a2 + a3cap
o
i )∆slewp

l · xp−

a3

ni∑
k1=0

∆capk1
i xik1

∆slewp
l · xp

(23)

where xp denotes whether the critical sink of net j is
reconnected or not. Compared with formulation in section IV,

N =
∑|Nc|

i=0 ni variables are used in optimization instead of
|Nc| and the matrix is not that sparse in our formulation. The
solving process could take longer time.

Congestion optimization formulated in Equation (24) is
similar to that in Section IV-A2. According to different sink
of net i, overflow penalty factor poki can be extracted based
on overflow of routing grid edge, which reconnecting sink
k to source may go across. Then penalty factor poki of each
variable xik is added in the objective function accordingly.

max
n∑

i=1

(β ·∆Li + ∆dksi→jix
· xik) +

ni∑
k=0

α · poki · xik (24)

B. Multi-Label Classifier

In this section, how machine learning based approach can
be applied to speed up the multiple sink optimization QP
process is explained. The binary classification task in Sec-
tion IV-B is to figure out whether the net will be reconnected
to its critical sink. Hence the feature and label data of that
problem is extracted based on net information. Different
from binary classification task of Section IV-B, our task of
problem Section III-B is to obtain the result of whether the
pin of each net is reconnected or not. The feature and label
extraction should be based on each single pin. Meanwhile,
the net information should also be collected to keep the data
integrity. The composition of data is shown in Figure 7.
Applying similar process as described in Section IV-B, feature
information will be extracted from the design before an MIQP
solver is invoked and the MIQP results will be assigned as
the labels to the data. The whole flow is drawn in orange in
Figure 6.

Net-based features Pin-based features Net Reconnection Label Pin Reconnection Label

Fig. 7: Composition of Data
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TABLE VII: Single Pin Features.
PinDeltaCap The difference in capacitance of sink jix before and after pin k in

net i is connected to root.
PinDeltaDelay The difference in delay of sink k before and after pin k in net i is

connected to root.
PinDeltaNetCap The difference in net capacitance of sink k before and after pin k

in net i is connected to root.
PinDeltaSlew The difference in slew of sink k before and after pin k in net i is

connected to root.

1) Data Construction: Due to difference of problems in
Section III-A and Section III-B, features of Section III-B
should not only reflect net information but also identify
pin property of reconnection. Therefore, besides the features
proposed in Section IV-B (net-based features in Figure 7),
pin property related features (pin-based features in Figure 7),
which are shown in Table VII, are also extracted from the
design. When sink k of net i is reconnected, the change
in delay, capacitance and slew of the most critical sink of
net i could be calculated. Net capacitance change also varies
when different sink k is reconnected. In another word, our
pin based data consists of two parts: net features proposed
in Section IV-B and pin features described in Table VII. Pin
based data of the same net will have the same net features
but various pin features.

If our multiple sinks optimization QP are transferred to
binary classification problem directly, net reconnection infor-
mation will be lost. To extract label of our optimization, one
way is to model it as multiclass classification. The different
net and pin reconnection information can be combined to
4 classes. The other way to calibrate data is to encode it
with two binary labels in order to distinguish its class more
accurately. In our work, the second way is adopted and two
binary labels are net and pin label. Net label represents
whether the net of pin i is reconnected or not. Pin label
represents whether the pin i is reconnected or not. Net labels
of sinks in the same net are same while their pin labels may
vary. Net label together with pin label could guide the model
to predict a more accurate result. In summary, pin based
sample owns two labels: net and pin reconnected label.

Fig. 8: Feature Importances.

2) Optimization Procedure: Data preprocessing described
in Section IV-B is performed. The feature importance figure

of our problem is shown in Figure 8. We also only selected
top 15 features and used RF as our multi-label classifier.

VI. EXPERIMENTAL RESULTS

In the experiments, the benchmarks of the contest in
ICCAD 2015 [22] are used and these benchmarks provide
timing information. OpenTimer [23] is used for STA. Our
work is implemented in C++ and tested on a 2.1 GHz Intel
Linux machine with a 64 GB memory. IBM ILOG CPLEX
V12.7.0 [24] is used to solve the QP.

TABLE VIII: ICCAD 2015 Benchmarks Information

Designs #nodes #nets clock periods
(ns)

superblue1 1209716 1215710 9
superblue3 1213253 1224979 10
superblue4 795645 802513 6
superblue5 1086888 1100825 9
superblue7 1931639 1933945 5.5

superblue10 1876103 1898119 10
superblue16 981559 999902 5.5
superblue18 768068 771542 7

A. Experiments on CSRSP Problem

1) QPTST Results:
a) Timing Results: The results of QPTST is shown

in Table IX. Evaluation is performed by Opentimer [23]
and our results provide interconnection information to it.
FLUTE Baseline shows timing results when all the nets are
constructed by FLUTE, which does not optimize timing.
Direct Connection is the experiment that the most critical
sink of every net is reconnected to its source. It can shorten
path length of all the nets but will increase wirelength a
lot. QPTST is our result and congestion-aware QPTST is
the algorithm described in Section IV-A2. β is set to 2500.
QPTST takes 27.6s while congestion-aware QPTST takes
30.71s on average. r wns and r tns denote WNS and TNS
improvement over the FLUTE baseline. r stwl and r d
denote tree length improvement over the FLUTE baseline
and direct connection. Direct Connection improves timing
by 1.10% on worst negative slack (WNS) and 6.81% on
total negative slack (TNS). However, it increases 18.74%
wirelength as expected. QPTST obtains 2.05% and 10.12%
improvement on WNS and TNS. The wirelength is only
worse by −0.55%. If we also consider congestion in the
objective function, timing is not as good as QPTST but can
still get 1.74% and 8.55% improvement on WNS and TNS.
The wirelength is improved compared with QPTST. All the
results of our algorithms achieve better wirelength and timing
compared with the FLUTE baseline and direct connection.

Besides using FLUTE as baseline, we also performed
QPTST experiments on timing driven routing tree constructed
by the PD method mentioned in [14]. Shown in Table X, our
algorithm achieves 1.7% and 7.11% improvement on WNS
and TNS with loss of 0.39% wirelength. It shows that our
algorithm is efficient on both non-timing aware trees and
timing driven routing.
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b) Congestion Results: Nets are decomposed to two-
pin nets by FLUTE first and NCTUgr [25] is performed to
measure congestion. As shown in Table XI, r denotes the
improvement compared with FLUTE based net decomposi-
tion. The overflow of QPTST and congestion aware QPTST
increases 1.91% and 1.15% respectively. Wirelength increases
1.29% and 0.79% respectively. In congestion aware TST, α is
set to 1000. Our algorithm QPTST can improve timing around
10% but congestion is increased by 1.91%. The outlier is due
to rough congestion model. With parameter tuning, a better
overflow result can be got but timing is not improved a lot.
Hence, we keep results with this parameter to show better
timing improvement.

s1 s3 s4 s5 s7 s10 s16 s18

−10

0

10

20

30

Timing Improvement

Overflow Increase

w/o congestion
w/ congestion

Fig. 9: Performance analysis on timing and routing congestion.

c) Analysis: Figure 9 shows the analysis of performance
of our algorithms on timing and congestion. The part above 0
of the chart is timing improvement and the other part is plotted
as increase of overflow. It is obvious that our algorithms can
achieve significantly timing improvement with small increase
in congestion.

2) Machine Learning-based Acceleration Results: The
data preparation and application flow shown in Figure 10a is
described as follows: Given the detail placement, we routed
the design using different routing tree algorithms, such as
FLUTE. Features are extracted from the routed design. Each
data sample is based on each net information. We then
performed our MIQP solver to get the reconnection result of
each net, which is the label information of the data sample.
Applying reconnection, we evaluated the design.

The training process is shown in Figure 10b. We origi-
nally obtained detail placements from [22] as our dataset. 8
benchmarks listed in Table VIII are utilized in the experiment.
Each benchmark has 8 detail placement results, which are
2 detail placement results given by the contest organizers
and 6 timing driven detail placement rsults with long and
short constraints generated by top 3 contestants in [22]. There
are

∑B
b=0

∑P
p=0 #netbp data samples in total, where B is

number of benchmarks and P is number of placement of each
benchmark. #netbp is number of multiple pin nets with nega-
tive slacks of benchmark b on placement p. B = 8 and P = 8.
As mentioned in Section IV-B, top 15 features are selected in
our experiments. Training set consists of data originally from

detail	placement� Routed	design�

Reconnection	
Results�

FLUTE�

MIQP� ML	model�
replace�

Revised	design�

Evaluation�

Feature	
Extraction�

Label	
Extraction�

Data	generation	flow	is	denoted	in	blue.�
ML	part	is	denoted	in	red.�

(a) Data preparation and application flow

Training	Set:	
Net	data	samples	from	
2	designs	of	each	s4,	s16,	
s18,	s7	
(8	designs	in	total)	
	

Test	Set:	
Net	data	samples	from	
6	designs	of	each	s4,	s16,	
s18,	s7	
8	designs	of	each	s1,	s3,	
s5,	s10	
	
	

All	routed	designs�
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Performance	in	
ML	(Accuracy)�

Performance	in	
Physical	design�

Performance	evaluation	of	trained	model�

(b) Machine learning flow
Fig. 10: Machine Learning-based Acceleration

4 placement results given by contest organizers (superblue4,
superblue16, superblue18 and superblue7). Those data with
scaled features are fed into cross validation and our machine
learning model is trained by random forest method. The
test data is from the rest of the dataset. We evaluated the
performance of trained model by machine learning accuracy
and timing improvement.

The average evaluation of each benchmark is shown in the
Table XII. We can see from the table that runtime is reduced
a lot. Moreover, we achieve a relative high accuracy classi-
fication rate. The final timing and wirelength improvement
are also listed in Table XII. Classification Over Base shows
timing results compared with baseline and Classification Over
QP shows the comparison with the results of QPTST. The
timing and wirelength quality are very compatible compared
with our QPTST results. By such runtime reduction, we
can use our ML classification approach to replace our MIQP
solver to decide reconnection of each net.

B. Experiments on MSRSP Problem

1) Multiple Sinks Optimization QP Results:
a) Timing Results: The results of MSRSP problem

solved by Section IV is shown in Table XIII. The multiple se-
lection optimization is the algorithm described in Section IV.
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TABLE IX: Experimental Results of Tree Surgery Technique.
Benchmarks FLUTE Baseline** Direct Connection* QPTST Congestion Aware QPTST

WNS r wns TNS r tns stWL r stwl r wns r tns r stwl r wns r tns r stwl r d CPU(s) r wns r tns r stwl r d CPU(s)
superblue1 -0.50 1.00 -0.46 1.00 0.96 1.00 -0.26% 3.20% -19.76% 1.76% 7.92% -0.38% 16.18% 15.60 1.78% 4.81% -0.37% 16.19% 25.05
superblue3 -1.01 1.00 -1.50 1.00 1.14 1.00 4.82% 5.79% -18.87% 5.61% 7.16% -0.11% 15.78% 6.12 5.37% 6.76% -0.09% 15.80% 15.10
superblue4 -0.62 1.00 -3.47 1.00 0.71 1.00 0.90% 10.81% -18.51% 1.60% 15.33% -1.79% 14.10% 48.95 0.47% 15.19% -1.58% 14.29% 57.36
superblue5 -2.57 1.00 -6.95 1.00 1.08 1.00 0.07% 1.42% -17.24% 0.32% 4.17% -0.62% 14.18% 11.93 0.12% 2.29% -0.27% 14.48% 22.02
superblue7 -1.51 1.00 -1.84 1.00 1.40 1.00 0.00% 3.54% -23.56% 0.00% 6.46% -0.13% 18.96% 44.13 0.00% 3.21% -0.08% 19.00% 20.91

superblue10 -1.65 1.00 -33.10 1.00 2.05 1.00 0.47% 2.47% -13.92% 0.92% 3.88% -0.79% 11.52% 69.73 0.00% 2.11% -0.48% 11.80% 77.03
superblue16 -0.46 1.00 -0.76 1.00 0.93 1.00 3.58% 25.18% -14.74% 3.94% 31.58% -0.38% 12.52% 6.42 3.94% 29.57% -0.36% 12.54% 15.21
superblue18 -0.46 1.00 -1.03 1.00 0.58 1.00 -0.75% 2.10% -23.30% 2.27% 4.45% -0.18% 18.75% 17.93 2.27% 4.45% -0.18% 18.75% 13.01

Average -1.10 1.00 -6.14 1.00 1.11 1.00 1.10% 6.81% -18.74% 2.05% 10.12% -0.55% 15.25% 27.60 1.74% 8.55% -0.43% 15.35% 30.71

*Direct Connection: directly connect the critical sinks to the source for all nets.
**WNS is in 104ps. TNS is in 106ps. stWL is in 108um.

TABLE X: Comparisons Between PD Based Tree Construction and QPTST.

Benchmarks PD Baseline Direct Connection QPTST
WNS r wns TNS r tns stWL r stwl r wns r tns r stwl r wns r tns r stwl r d CPU(s)

superblue1 -0.50 1.00 -0.47 1.00 1.01 1.00 -0.86% 1.53% -14.78% 0.90% 5.46% -0.24% 12.67% 14.14
superblue3 -1.01 1.00 -1.51 1.00 1.22 1.00 2.02% 2.90% -14.80% 2.71% 4.15% -0.07% 12.84% 5.91
superblue4 -0.63 1.00 -3.54 1.00 0.75 1.00 -0.63% 9.66% -14.50% -0.02% 13.20% -1.29% 11.53% 39.80
superblue5 -2.57 1.00 -6.95 1.00 1.11 1.00 -0.18% 0.12% -13.43% 0.10% 2.91% -0.45% 11.44% 12.08
superblue7 -1.52 1.00 -1.81 1.00 1.51 1.00 0.00% 1.06% -18.69% 0.56% 5.24% -0.09% 15.67% 11.46

superblue10 -1.66 1.00 -33.14 1.00 2.12 1.00 4.65% 2.78% -10.97% 5.12% 4.12% -0.60% 9.34% 57.87
superblue16 -0.46 1.00 -0.69 1.00 0.96 1.00 2.41% 11.21% -12.12% 3.10% 19.44% -0.28% 10.56% 6.01
superblue18 -0.45 1.00 -1.04 1.00 0.63 1.00 -0.74% -0.29% -18.12% 1.10% 2.41% -0.14% 15.23% 4.43

Average -1.10 1.00 -6.14 1.00 1.16 1.00 0.83% 3.62% -14.68% 1.70% 7.11% -0.39% 12.41% 18.96

TABLE XI: Comparisons Before and After Considering Congestion in QPTST.
FLUTE Based Net Decomposition QPTST Congestion Aware QPTST

Benchmarks WL r Overflow r WL r Overflow r WL r Overflow r
superblue1 0.78 1.00 3297.61 1.00 0.82 -3.16% 3603.07 -9.26% 0.82 -2.46% 3593.22 -8.96%
superblue3 1.07 1.00 2538.63 1.00 1.07 -0.83% 2538.63 0.00% 1.07 -0.83% 2538.63 0.00%
superblue4 0.77 1.00 749.92 1.00 0.78 -2.24% 778.55 -3.82% 0.77 -0.18% 751.39 -0.20%
superblue5 0.73 1.00 3060.91 1.00 0.73 -1.72% 3060.80 0.00% 0.73 -1.72% 3060.80 0.00%
superblue7 .37 1.00 3972.55 1.00 1.38 -0.93% 3984.21 -0.29% 1.37 -0.81% 3972.87 -0.01%

superblue10 1.71 1.00 7696.32 1.00 1.72 -1.69% 7768.53 -0.94% 1.71 -1.03% 7697.78 -0.02%
superblue16 0.98 1.00 684.93 1.00 0.98 -0.15% 688.89 -0.58% 0.98 0.17% 685.04 -0.02%
superblue18 .63 1.00 74.81 1.00 0.63 0.37% 75.08 -0.36% 0.63 0.55% 74.81 0.00%

Average 1.01 1.00 2759.46 1.00 1.01 -1.29% 2812.22 -1.91% 1.01 -0.79% 2796.82 -1.15%

TABLE XII: Experimental Results of Machine Learning Acceleration (MLA).

Benchmarks ML Accuracy ML Over Base ML Over QP
Accuracy CPU(s) QP-CPU(s) r wns r tns r wl r wns r tns r wl

superblue1 82.74% 2.98 14.87 1.71% 6.10% -0.38% 0.42% 1.28% -0.06%
superblue3 82.38% 1.13 6.16 3.67% 5.32% -0.10% 0.37% 1.26% -0.05%
superblue4 99.14% 6.39 49.13 1.55% 13.87% -1.78% -0.02% 0.11% 0.00%
superblue5 83.19% 2.97 11.87 0.25% 3.40% -0.57% 0.05% 0.06% -0.01%
superblue7 94.91% 1.59 45.63 0.00% 5.49% -0.13% 0.00% 0.41% 0.00%

superblue10 87.99% 7.73 61.68 0.73% 3.71% -0.76% 0.07% 0.55% -0.08%
superblue16 95.53% 1.54 6.31 5.24% 29.54% -0.32% 0.10% 0.14% 0.00%
superblue18 97.13% 1.21 18.65 0.09% 3.89% -0.18% -0.01% 0.01% 0.00%

The meaning of WNS, r wns, TNS, rtns, stWL and
rstwl are adopted from Section VI-A1. Overall, our multiple
selection optimization improved 10.65% TNS and 2.65%
WNS on average. However, it takes 23.67 seconds. Compared
with average improvement of reconnecting critical sinks, it
improved the quality from 10.12% TNS and 2.05% WNS
to 10.65% TNS and 2.65% WNS. With more sinks to be
considered, the timing quality can be improved. Since more
sinks are reconnected, wirelength increased 0.56% and it is
0.01% worsen than QPTST’s.

The multiple selection congestion optimization is the ap-
proach that consider timing and congestion together by recon-
necting multiple sinks. It improved 8.86% TNS and 2.08%
WNS on average and it takes 31.84s. The congestion aware
optimization can improve WL but reduce the improvement
on TNS and WNS.

b) Congestion Results: The congestion analysis of mul-
tiple selection optimization and multiple selection congestion
optimization are performed as same as described in previous
Section VI-A1 congestion paragraph. The overflow of multi-
ple selection optimization and multiple selection congestion
optimization increased 1.95% and 1.65% respectively.

c) Analysis: Figure 11 shows the analysis of perfor-
mance of multiple sink optimization on timing and conges-
tion. The bar above 0 of the chart is timing improvement and
the bar below 0 is plotted as increase of overflow. From the
chart, we can conclude that overflow can be reduced a lot if
the congestion is also considered.

2) Multi-label Classifier Results: The results of multi-label
classifier is listed in Table XV. The training process is similar
with the process described in Section VI-A2. The column ML
Accuracy shows prediction accuracy and runtime comparison
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TABLE XIII: Timing Results for Multiple Sinks Candidates QP
Benchmarks Baseline Multiple Selection Optimization Multiple Selection Congestion Optimization

WNS r wns TNS r tns stWL r stwl r wns r tns r stwl CPU(s) r wns r tns r stwl CPU(s)
superblue1 -0.50 1.00 -0.46 1.00 0.96 1.00 1.57% 7.55% -0.38% 24.98 1.76% 4.82% -0.32% 32.46
superblue3 -1.01 1.00 -1.50 1.00 1.14 1.00 5.98% 7.72% -0.11% 16.48 5.83% 7.47% -0.09% 25.32
superblue4 -0.62 1.00 -3.47 1.00 0.71 1.00 1.60% 15.48% -1.85% 29.81 1.60% 15.52% -1.75% 37.57
superblue5 -2.57 1.00 -6.95 1.00 1.08 1.00 0.34% 4.19% -0.62% 16.29 0.14% 2.33% -0.29% 25.98
superblue7 -1.51 1.00 -1.84 1.00 1.40 1.00 0.00% 7.38% -0.14% 26.97 0.00% 4.10% -0.09% 34.88
superblue10 -1.65 1.00 -33.10 1.00 2.05 1.00 4.45% 4.88% -0.80% 48.54 0.05% 2.16% -0.49% 56.86
superblue16 -0.46 1.00 -0.76 1.00 0.93 1.00 3.97% 33.30% -0.40% 14.65 3.97% 29.81% -0.38% 22.26
superblue18 -0.46 1.00 -1.03 1.00 0.58 1.00 3.29% 4.68% -0.20% 11.66 3.29% 4.68% -0.20% 19.42
Average -1.10 1.00 -6.14 1.00 1.11 1.00 2.65% 10.65% -0.56% 23.67 2.08% 8.86% -0.45% 31.84

TABLE XIV: Comparisons Before and After Considering Congestion in Multiple Selection Optimization
FLUTE Based Net Decomposition Multiple Selection Optimization Multiple Selection Congestion Optimization

Benchmarks WL r Overflow r WL r Overflow r WL r Overflow r
superblue1 0.78 1.00 3297.61 1.00 0.82 -3.17% 3603.53 -9.28% 0.82 -3.01% 3598.93 -9.14%
superblue3 1.07 1.00 2538.63 1.00 1.07 -0.94% 2540.85 -0.09% 1.07 -0.93% 2539.45 -0.03%
superblue4 0.77 1.00 749.92 1.00 0.79 -2.41% 780.21 -4.04% 0.78 -2.05% 769.14 -2.56%
superblue5 0.73 1.00 3060.91 1.00 0.73 -1.75% 3062.74 -0.06% 0.73 -1.96% 3062.09 -0.04%
superblue7 1.37 1.00 3972.55 1.00 1.38 -0.95% 3984.37 -0.30% 1.37 -0.90% 3977.98 -0.14%

superblue10 1.71 1.00 7696.32 1.00 1.72 -1.69% 7770.84 -0.97% 1.72 -1.41% 7725.19 -0.38%
superblue16 0.98 1.00 684.93 1.00 0.98 -0.17% 689.17 -0.62% 0.98 -0.17% 688.36 -0.50%
superblue18 0.63 1.00 74.81 1.00 0.63 0.34% 74.98 -0.24% 0.63 0.36% 75.10 -0.39%

Average 1.01 1.00 2759.46 1.00 1.01 -1.34% 2813.34 -1.95% 1.01 -1.26% 2804.53 -1.65%

TABLE XV: Experimental Results of Multi-label Classifier.

Benchmarks ML Accuracy ML Timing Over Base ML Timing Over MQP
Accuracy CPU(s) MQP-CPU(s) r wns r tns r wl r wns r tns r wl

superblue1 86.74% 5.87 22.53 1.71% 6.68% -0.36% 0.14% 0.28% -0.01%
superblue3 85.81% 2.27 15.8 3.61% 5.18% -0.09% -0.10% -0.26% 0.02%
superblue4 98.89% 13.08 25.81 1.55% 14.31% -1.92% 0.24% 1.10% -0.29%
superblue5 84.54% 17.56 15.90 0.20% 2.78% -0.50% -0.02% -0.63% 0.12%
superblue7 96.41% 2.74 47.7 0.00% 6.38% -0.13% 0.00% 0.23% 0.00%
superblue10 90.27% 15.19 51.38 0.64% 3.12% -0.71% -3.26% -1.03% -0.02%
superblue16 95.92% 3.36 13.33 5.57% 31.18% -0.33% 0.06% 0.05% 0.00%
superblue18 97.20% 2.17 10.63 0.20% 4.16% -0.19% -0.08% -0.04% 0.01%

s1 s3 s4 s5 s7 s10 s16 s18

−10

0

10

20

30
Timing Improvement

Overflow Increase

w/o congestion
w/ congestion

Fig. 11: Performance analysis on multiple sink optimization of
timing and routing congestion.

among benchmarks. The accuracy differs from benchmarks
and the runtime is shorten compared with runtime of MQP.
Our multi-label classifier takes more time compared with the
previous binary classifier. The columns of ML over Base
is the results compared with baseline. The columns of ML
over MQP is the results compared with the multiple selection
optimization in Table XIII. The quality is comparable with
MQP’s but runtime is much faster.

C. Comparisons Among Methods

We list four methods results: QP Section IV-A, ML Sec-
tion IV-B, M-QP Section V-A and M-ML Section V-B. Each
design has 8 different placement (only 7 for s7). The value of
y-axis in each subfigure of Figure 12 is the percentage ratio
compared with baseline. The comparison is among WNS,
TNS, WL and runtime.

Figure 12a is the WNS comparisons. M-QP performs better
than QP on 7 designs. ML approach has 5 designs no worse
than QP and the rest 2 designs results are very similar. M-ML
has 5 designs better than QP and 4 designs no worse than M-
QP. On average, the improvement of WNS is 1.49%, 1.63%,
2.09% and 1.71% of QP, ML, M-QP and M-ML respectively.
M-QP shows the best performance based on WNS.

Figure 12b is the TNS comparisons. The results of M-QP
is better than QP’s on 7 designs and it is only worse 0.03%
on design s4. ML outperformed QP among all designs. M-
ML has similar results with M-QP excepts s5 and s10. On
average, the improvement of TNS is 8.57%, 9.04%, 9.39%
and 9.29% of QP, ML, M-QP and M-ML respectively. M-QP
obtains the best performance based on TNS.

Figure 12c is the WL comparisons. On average, the im-
provement of WL is −0.51%, −0.45%, −0.52% and −0.53%
of QP, ML, M-QP and M-ML respectively.

Figure 12d is the Runtime comparisons. ML is better than
QP and M-ML is better than M-QP among all designs. On



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2912930, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

s1 s3 s4 s5 s7 s10 s16 s18

0

1

2

3

4

5

Im
pr

o v
em

en
t

R
at

io
on

W
N

S
QP
ML

M-QP
M-ML

(a) WNS Comparisons

s1 s3 s4 s5 s7 s10 s16 s18
0

5

10

15

20

25

30

Im
pr

o v
em

en
t

R
at

io
on

T
N

S

QP
ML

M-QP
M-ML

(b) TNS Comparisons

s1 s3 s4 s5 s7 s10 s16 s18

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Im
pr

ov
em

en
t

R
at

io
on

W
L

QP
ML

M-QP
M-ML

(c) WL Comparisons

s1 s3 s4 s5 s7 s10 s16 s18

0

10

20

30

40

50

60

70

R
un

tim
e

QP
ML

M-QP
M-ML

(d) Runtime Comparisons
Fig. 12: Performance analysis on Different Methods.

average, the improvement of runtime is 27.6%, 3.2%, 25.39%
and 7.78% of QP, ML, M-QP and M-ML respectively.

Overall, M-QP has best timing quality but runtime is not
that good. M-ML has a comparable results but much faster
runtime.

VII. CONCLUSION

Timing is a critical issue for the design optimization and it
is hard to improve timing without increasing routing conges-
tion. In this work, we formulate the tree surgery problem as
a QP, which optimizes gate delay and net delay with adjacent
nets considered. In order to enhance routability, congestion
is also optimized in our algorithm. To speed up the process,
a machine learning-based algorithm is proposed and features
related to timing optimization are extracted from the design.
By considering reconnecting more sinks, we formulate a QP
to select reconnection among all sinks of each critical net and
a multi label classifier is proposed to accelerate optimization.
In the experimental results, our algorithms can achieve high
quality of timing improvement.
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