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Dr. CU: Detailed Routing by Sparse Grid Graph
and Minimum-Area-Captured Path Search
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Abstract—Different from global routing, detailed routing takes
care of many detailed design rules and is performed on a
significantly larger routing grid graph. In advanced technology
nodes, it becomes the most complicated and time-consuming
stage in the VLSI physical design flow. We propose Dr. CU, an
efficient and effective detailed router, to tackle the challenges. To
handle a 3D detailed routing grid graph of enormous size, a set
of two-level sparse data structures is designed for runtime and
memory efficiency. For handling the minimum-area constraint,
an optimal correct-by-construction path search algorithm is
proposed. Besides, an efficient bulk synchronous parallel scheme
is adopted to further reduce the runtime usage. Compared with
the other state-of-the-art academic detailed routers, Dr. CU
reduces the number of design rule violations by one or two orders
of magnitude. At the same time, it uses shorter wire length, fewer
vias, and significantly less runtime. The source code of Dr. CU
is available at https://github.com/cuhk-eda/dr-cu.

Index Terms—detailed routing, rip up and reroute, intercon-
nect, physical design.

I. INTRODUCTION

BECAUSE of its enormous computational complexity,
VLSI routing is usually performed in two stages, global

and detailed. In the global routing stage, the routing space is
split into an array of regular cells, where a coarse-grained
routing solution is generated. It optimizes wire length, via
count, routability, timing and other metrics with a global
view. Detailed routing, on the other hand, realizes the global
routing solution by considering exact metal shapes and posi-
tions. It takes care of many complicated detailed design rules
(e.g., parallel-run spacing, end-of-line spacing, cut spacing,
minimum area, etc). Its solution quality directly influences
various eventual design metrics such as timing, signal integrity,
and chip yield [2]. Meanwhile, its solution space, a 3D grid
graph, is significantly larger than that of global routing. In
advanced technology nodes, detailed routing becomes the most
complicated and time-consuming stage [3].

During the past decade, many approaches were proposed to
complete fast and high-quality global routing with a sustaining
progress (e.g., FGR [4], FastRoute [5], BoxRouter [6], An-
cher [7], GRIP [8], BonnRoute [9], NCTU-GR [10]). However,
there is insufficient effort for exploring efficient and effective
detailed routers in academia. RegularRoute [2] encourages
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regular routing patterns and exploits a maximum independent
set formulation for better design rule satisfaction. MANA [11]
considers end-of-line spacing and minimum length of a wire
segment in maze routing. The work in [12] presents the
data structures and algorithms for detailed routing used in
BonnRoute. Besides, several specific issues in detailed routing
have been discussed. For example, methods for the pin access
optimization are proposed in [13]–[15]. For others, the impact
of various manufacturing technologies have been dealt with,
including triple patterning [16]–[18], self-aligned doubling
patterning [19], and directed self-assembly [20].

Recently, the ISPD 2018 Initial Detailed Routing Contest [3]
stimulates several works on detailed routing. Kahng et al. [21]
propose TritonRoute, a detailed router with integer lin-
ear programming (ILP) based intra-layer parallel routing.
Sun et al. [22] present a detailed routing algorithm with
a multi-stage rip-up and re-route scheme. Their approaches
suffer from the weakness in both design rule satisfaction and
runtime scalability.

As the feature size scales down, not only the problem size
but also the complexity of design rules of detailed routing
becomes increasingly challenging. Moreover, many detailed
routers heavily rely on post processing for fixing design rule
violations. Design rule dimensions, however, do not scale well
with feature miniaturization (e.g., feature size decreases much
faster than minimum area values) and require relatively more
spaces for fixing. In this way, a post processing step fails more
frequently [12]. Therefore, we proposes Dr. CU, a detailed
routing framework that is superiorly scalable in runtime as well
as memory usage and provides more correct-by-construction
design rule satisfaction. Our contributions can be summarized
as follows.

• We design a set of two-level sparse data structures for a
3D detailed routing grid graph of enormous size.

• We develop an optimal correct-by-construction path
search that captures the minimum-area constraint.

• We also propose an efficient bulk synchronous parallel
scheme to further reduce the turn-around time of the
detailed routing process.

The remainder of this paper is organized as follows. Sec-
tion II introduces the formulation of the VLSI detailed routing
problem. Section III and Section IV provide the details of
our data structures and algorithms respectively. Section V
describes the parallel scheme. In the end, Section VI shows
the experimental results, and Section VII concludes the work.
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M1

M2

M3

Fig. 1: An example 3D detailed routing grid graph. In this exam-
ple, preferred directions of metal 1 (M1) and M3 layers are both
horizontal, while that of M2 is vertical.

II. PRELIMINARIES

Before illustrating the details of our data structures and
algorithms, the problem formulation of detailed routing is
introduced in this section.

A. Routing Space

VLSI Routing is on a stack of metal layers. A wire segment
on a layer runs either horizontally or vertically. Each layer
has a preferred direction for routing, which benefits man-
ufacturability [15], routability and design rule checking [2].
The preferred directions of adjacent layers are perpendicular
to each other in common design practice. Besides, regularly-
spaced tracks, where the majority of wires are routed on,
can be predefined according to the wire width and parallel-
run spacing constraint. In this work, wrong-way and off-track
wires are considered only for short connections (especially to
pins).

Wires on adjacent metal layers can be electrically connected
by vias. A via is across a cut layer, which is between the two
metal layers. Note that for vias across a specific cut layer, there
may be several via types to be selected from. Different via
types have varied metal shapes (usually rectangles with various
widths and heights) on the two metal layers. The flexibility
provides a way for resolving the spacing violations between
vias and obstacles.

The tracks on all metal layers define a 3D grid graph for
detailed routing, as Fig. 1 shows. On each track, there is a
series of vertices. Note that a vertex is therefore uniquely
defined by a 3D index, which is a tuple of layer index,
track index (in the non-preferred direction), and relative index
along the track (in the preferred direction). A vertex connects
downwards to the lower layer, upwards to the upper layer,
or both. Adjacent vertices along a track are also connected. In
this way, a same-layer edge represents a possible on-track wire
segment, while a cross-layer edge represents a possible via. In
this grid graph, an edge represents either a wire segment or a
via.

Over the chip, there are some routing obstacles that vias
and wire segments should avoid to prevent short and spacing
violations. In detailed routing, the relatively small obstacles
within standard cells (e.g., pins and intra-cell wires) should
also be handled.

𝒆𝒐𝒍𝑾𝒊𝒅𝒕𝒉

𝒆𝒐𝒍𝑺𝒑𝒂𝒄𝒆

𝒆𝒐𝒍𝑾𝒊𝒕𝒉𝒊𝒏

𝑬𝑶𝑳

Violation 

region

(a)

𝒘𝒊𝒅𝒕𝒉𝟐

𝒘𝒊𝒅𝒕𝒉1

𝒔𝒑𝒂𝒄𝒊𝒏𝒈
𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍𝑹𝒖𝒏𝑳𝒆𝒏𝒈𝒕𝒉

(b)

Fig. 2: (a) Example of end-of-line (EOL) spacing. (b) Example of
parallel-run spacing.

Assuming that a global routing result is already well op-
timized for certain metrics (e.g., timing, routability, power),
a detailed router needs to honor the global routing result as
much as possible. The optimized metrics are thus kept with
detailed design rules handled. In this paper, the 3D global
routing result is referred as routing guide, and out-of-guide
routing (either wire or via) is penalized.

B. Design Rules

The most fundamental and representative design rules han-
dled by detailed routing are as follows [3].
• Short. A via metal or wire metal cannot overlap with

another metal object like via metal, wire metal, obstacle,
or pin, except when the two metal objects belong to the
same net.

• End-of-line (EOL) spacing. A metal end is an EOL if its
width is shorter than eolWidth. EOL is required to pre-
serve a spacing greater than or equal to eolSpace beyond
the EOL anywhere less than the eolWithin distance, as
Fig. 2(a) shows.

• Parallel-run spacing. For two metal objects with paral-
lelRunLength (i.e., the projection length between them),
there is a spacing requirement, as Fig. 2(b) shows. The
value of parallel-run spacing rule depends on the widths
of the two metal rectangles.

• Cut spacing. For vias across the same cut layer, their cut
shapes in the cut layer should be sufficiently far away
from each other.

• Minimum area. The area of a metal polygon is required
to be above a threshold.

C. Problem Formulation

The detailed routing problem can be formally defined as
follows. Given a placed netlist, routing guides, routing tracks,
and design rules, route all the nets and minimize a weighted
sum of
• Total wire length,
• Total via count,
• Non-preferred usage (including out-of-guide and off-track

wires/vias, and wrong-way wires), and
• Design rule violations (including short, spacing and

minimum-area violations).
Note that design rule violations are highly discouraged and
suffer much more significant penalty than others.
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Fig. 3: An overview of the two-level grid graph data structures.

III. TWO-LEVEL SPARSE DATA STRUCTURES

The grid graph for detailed routing is similar to that for
global routing in structure, but is significantly more fine-
grained and thus has a much larger scale. To support the
detailed routing algorithms with both economic memory usage
and efficient query, we design a set of two-level data structures
for the routing grid graph.

There are a global grid graph and local ones, as Fig. 3
shows. The global grid graph data structure stores the graph
implicitly without instantiating all vertices. Here, the informa-
tion of routed edges are stored sparsely by balanced binary
search trees (BSTs) and intervals. The local grid graph, a
local cache of the global one, is created for routing a net. It
is a sparse subgraph of the full-chip 3D grid graph on the
routing region of a net, where edge costs are readily available
for conducting maze routing.

A. Sparse Global Grid Graph

Edges of routed nets are called routed edges. Note that the
an edge can be either a via or a wire segment. The global grid
graph stores routed edges in the sparse data structure based
on BSTs and intervals.

1) BST and Interval Based Storage: It is very expensive
to use a full-chip 3D direct-address table for storing routed
edges. First, its size will be unaffordable (109 vertices for just
10 metal layers and 104 tracks on each layer) [9]. Besides the
time-consuming memory allocation and initialization, some
queries are also inefficient if using this data structure. For
example, to record, query or remove the usage of a wire
segment (e.g., spanning 103 vertices), we need to change or
check all the 103 vertices on it.

Instead of a 3D direct-address table, we use a 2D table
for the dimension of layers and the dimension of tracks (i.e.,
the non-preferred direction), and use BST and intervals in the
third dimension (i.e., the preferred direction) for sparsity. For
a track, there are three balanced BSTs, two for storing routed
vias and one for storing routed wires. For vias, normal BSTs
with indexes in the preferred direction being keys are used.
Each via is stored twice, one on the lower track and the other
one on the upper track. The duplication benefits the range
searches that are needed on both the lower and upper tracks.
This will be illustrated in detail later. For wire segments,
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Pin

Pin of net A
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Fig. 4: Wire-obstacle and wire-pin conflicts stored in the global
grid graph. (a) A region with an obstacle and three pins. (b) Wires
conflicted with obstacles/pins, where a wire-pin conflict is excepted
for the net of the pin, but wires conflicted with pins of different nets
have no exception. (c) Interval based storage.

a BST with nodes representing non-overlapping intervals is
employed. In this way, the memory used is linear to the
number of wire segments instead of the number of vertices
involved.

2) Conflicts with Obstacles and Pins: For obstacles and
pins with irregular shapes, the vias and wires that may cause
short or spacing violations with them are marked in advance
in batch. Since obstacles and pins cannot be ripped up, the
marking is a one-time effort. Note that a conflict with a pin
is net-dependent, because a via or wire is allowed to be close
to a pin of the same net. Therefore, some conflicts should be
associated with some possibly excepted net(s).

Fig. 4 shows an example of marking wires conflicted with
obstacles and pins. For each obstacle or pin, there are several
vertices in the grid graph that will cause short or spacing
violations if a wire segment is routed through it. For an
obstacle, the conflict applies to all nets (red crosses in Fig. 4(b)
indicate conflicts without exception); for a pin, the conflict
applies to all nets but the net of the pin (yellow crosses
in Fig. 4(b) indicate conflicts with exception). However, the
conflicts between a wire and the pins of different nets cannot
be excepted. To save memory usage, we use an interval based
storage here as well. Only conflicted vertices are stored, while
violation-free vertices are implied. For continuous vertices
with the same-type of conflict along a track, they will be stored
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as an interval, as Fig. 4(c) shows.
Via-obstacle and via-pin violations are more difficult to

capture than wire-obstacle and wire-pin violations, because
there are several types of vias that can be chosen from.
Essentially, all via types need to be attempted. A via location
should be penalized if and only if all via types fail to satisfy
the spacing requirement with its neighboring obstacles or pins.
Note that a via-pin conflict may be excepted for multiple nets
due to the via type selection.

When routing a net, the vias that will be considered
for using are referred as candidate vias. In the preliminary
version [1] of this work, we simply store all the obstacles
and pins in R-trees [23] and later query the via-obstacle
and via-pin violations from the R-trees. For each candidate
via of a net, its neighboring obstacles and pins are queried
from the R-trees and checked for possible violations. There
is a big drawback with this approach. A via may be treated
as a candidate by many nets, resulting in repeated queries
and checking processes for a single via. The aforementioned
pre-computation scheme for conflicted vias can save runtime
significantly, which will also be evidenced by the experiments
in Section VI.

Three techniques are crucial for enabling such speed-up.
First, we only perform the pre-computation for metal layers
with huge numbers of obstacles and pins1. In our imple-
mentation, we set a lower bound threshold on the number
of obstacle/pin metal rectangles to 105. For many designs,
it means a pre-computation for one or two layers. Second,
we store conflicted vias only, while violations-free vias are
implied. The third technique is the usage of BST and interval
based storage scheme. The statistics in TABLE I provides
some evidence on the advantages of using these techniques.
On ispd18_test10, metal layers 1, 2, and 4 have large
numbers of obstacles and pins. Therefore, cut layers 1, 2, 3,
and 4 need the pre-computation of via conflicts (cut layer
i connects metal layers i and i + 1). If storing the conflict
situation for all via locations with direct-address tables, it
means GB scale memory usage for a single layer (note that
we need to store the information of excepted nets). Storing
conflicted vias reduces the memory usage to 28.247% for cut
layer 1. Using intervals further reduces the usage to 8.506%.
For some layers, the reduction can be even much larger (to
0.008%).

B. Global Grid Graph Query by Look-up Table

When routing a net, the edges that will be considered for
using are referred as candidate edges. Their costs (possibly
penalized by the short/spacing violations) will be queried from
the global grid graph before running maze routing on a net.

Different from the conflict with obstacles, the conflict with
routed edges will change during the routing process and cannot
be marked in advance. Considering various design rules and
a significant number of candidate edges, a proper scheme that

1We focus the discussion on metal layers for simplicity. In ISPD 2018
benchmarks, which we use for the experiments, there is also no obstacle in
cut layers. However, our method is generic and can be easily extended for
considering violations in cut layers.
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Fig. 5: Query the violations on candidate vias due to the previously
routed edges in global grid graph.

can efficiently query their costs is in need. We build several
via/wire conflict LUTs to achieve that.

1) Via/Wire Conflict Look-up Table: For routing a net,
the metal short with routed edges can be trivially detected
as interval overlapping. For the following spacing violation
conflicts, their identification is less straight-forward:
• Via-via conflicts: for a specific via, it may conflict not

only with vias on the same cut layer (same-layer vias)
but also with vias on the adjacent cut layers. The conflict
between same-layer vias may be due to spacing rules
on either cut layer, metal layers, or both. The conflict
between different-layer vias is caused by metal spacing
requirement.

• Via-wire conflicts: a via may have spacing violations with
wires on the lower and the upper metal layers that it
connects.

• Wire-wire conflicts: two wires may be too close to each
other at their ends and violate the spacing constraint.

The above violations can be detected during routing. However,
these detection operations are extremely frequent and on-the-
fly detections are too time-consuming. Since we are working
on a relatively regular grid graph, some light-weight LUTs can
accelerate the process. Conceptually, via/wire conflict LUTs
immediately tells what neighboring edges will conflict with a
given edge. There are several types of them: when the given
edge is a via ei, a via-lower-wire conflict LUT tells what
neighboring wire segments on the lower metal layer of ei
cause conflicts with ei; similarly, given a wire segment ej , a
wire-upper-via conflict LUT tells what vias connecting to the
layer above ej may be conflicted with ej ; so on and so forth.
Two conflict LUTs are called the inverse LUT to each other
if the types of the given edge and the neighboring edges are
swapped. For example, the inverse of a via-lower-wire LUT
is a wire-upper-via LUT.

Regarding the indexing and sizes of conflict LUTs, we
explain the via-via one as an example. For two same-layer vias,
their distance is unique for specific track index differences
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TABLE I: Statistics of Via-Obstacle and Via-Pin Conflicts on ispd18_test10

Layer

Metal layer information Cut layer information
# obtacle/pin metal rectangles

Pre-
compute?

# via locations
# conflicted

intervals

# conflicted
intervals
/ # viasObtacle Pin Total

Conflicted
(without

excepted nets)

Conflicted
(with an

excepted net)

Conflicted
(with multiple
excepted nets)

Conflicted
(total) Total Conflicted

/ total

1 839912 2107724 2947636 Yes 41559185 11818934 9608 53387727 189000000 28.247% 16075707 8.506%
2 763422 0 763422 Yes 38375423 0 0 38375423 189000000 20.304% 585913 0.310%
3 24092 0 24092 Yes 11665650 0 0 11665650 189000000 6.172% 11248534 5.952%
4 580772 0 580772 Yes 7537450 0 0 7537450 189000000 3.988% 16040 0.008%
5 0 0 0 No - - - - - - - -
6 0 0 0 No - - - - - - - -
7 0 332 332 No - - - - - - - -
8 0 879 879 No - - - - - - - -
9 0 0 0 - - - - - - - - -

in the lower metal layer and the upper metal layer, because
of the equal spacing of the tracks. Therefore, only one LUT
is needed for each layer. Such an LUT itself is 2D and is
indexed by the track index differences. For two different-
layer vias, three consecutive metal layers are involved. Using
their corresponding vertices on the middle metal layer for
indexing, their distance in the non-preferred direction is solely
determined by the difference in track indexes. However, in the
preferred direction, vertices along a track may have irregular
spacing (e.g., M2 in Fig. 1). As a result, a layer needs a
series of 2D LUTs, where each LUT serves for vertices with
a specific index in the preferred direction. For each of the
2D LUT storing the conflicts between a target via and its
neighboring vias, we first need to calculate its size. When
the calculation cannot be accurate, we make it pessimistic.
An entry of the 2D LUT represents a neighboring via, of
which the distance offset to the target via can be known by the
corresponding index offset. Then, for each neighboring via, we
test whether there is violation with the target via according to
the design rules described in Section II-B and mark the 2D
LUT correspondingly.

2) Single Edge Query: The cost of a candidate edge con-
sists of a unit edge cost and some possible penalty caused by
two types of violations. The first type is violations with ob-
stacles and pins, which has been introduced in Section III-A2.
The second type is violations with routed edges. The via/wire
conflict LUTs tell the neighboring edge positions that will
have conflict with the candidate edge. The only thing to do is
to check whether the positions are occupied. An example is
shown by Fig. 5(a). For the candidate via, a same-layer via-via
conflict is detected with the help of the corresponding LUT.
Meanwhile, there is no via-lower-wire conflict because no
routed wire exists at the two potentially conflicting positions
specified by the LUT.

3) Batch/Long Edge Query: Usually, a set of neighboring
edges (either vias or wire segments) along a track are all
candidate edges for routing a net. If querying them individ-
ually, O(k log n) time is needed with k being the number of
candidate edges and n being the BST size2. A range search on
BST can improve the efficiency. Given a set of candidate edges
along a track and the corresponding LUTs, a query region
where routed edges may have conflicts with can be identified.

2To be more rigorous, since multiple BSTs (for vias or wires, for different
layers) may all need to be queried, n represents the largest size of all BSTs.

By the range search on BSTs according to this query region
and referring to the inverse LUTs, the conflicted candidate
edges can be found. An example on detecting same-layer via-
via conflict is illustrated by Fig. 5(b). First, the query region
and two routed vias within it are identified. Starting from
the two routed vias, the inverse LUT (the same-layer via-via
conflict LUT) finds five conflicted candidate vias.

Suppose the number of routed edges within the query region
is m. The range search on a BST takes O(m + log n) time,
which can be conducted by finding the first and last tree nodes
within the range. Besides, m = O(k). Note that m can be sig-
nificantly smaller than k because a long routed wire segment is
stored as a long interval instead of a bunch of short edges in a
BST. Therefore, the time for retrieving the routing cost of the k
candidate edges is O(k)+O(m+logn) = O(k+log n) instead
of O(k log n). Moreover, the cost of a long wire segment may
be queried as a whole, then the time is further improved to
O(m+ log n).

In the batch query along a track, routed vias to both lower
and upper layers should be considered. As mentioned in
Section III-A1, a via is stored twice on both its lower and
upper tracks. In this way, efficient BST range search along
either track is enabled.

C. Sparse Local Grid Graph

The local grid graph of a net is the subgraph of the full-
chip 3D grid graph within its routing region (the routing guide
with possibly minor expansion). In terms of data structures, it
caches the graph structure and all edge costs of the subgraph
by direct-address tables, supporting the maze routing.

Its sparsity is in two aspects. First, only the routing region
is considered, which is substantially smaller than the full-
chip region. Second, many vertices become redundant in this
subgraph and are removed.

1) Routing Region: When routing a net, only the region
around its routing guide is considered due to two reasons. First,
detailed routing should honor global routing solution, i.e., rout-
ing guides, because many objectives (e.g., timing, routability)
are optimized in global routing. For some local congestions,
global routing may not be able to model and resolve, so
minor out-of-guide routes may be necessary. However, such
disturbance should be minimized. Second, maze routing on the
full-chip 3D grid graph will suffer from prohibitive runtime
due to its enormous scale. In our implementation, the routing



0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2927542, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

redundant vertex
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Fig. 6: Long edges by removing redundant vertices.

region of a net is expanded by a small margin from its routing
guide. All out-of-guide edges are penalized. For difficult-to-
route nets, the expansion margin may be increased.

2) Long Edge: Conceptually, the local grid graph is simply
a subgraph induced by vertices within the routing region.
However, many vertices in the subgraph have only two neigh-
bors remained and become redundant, as Fig. 6(a) shows. In
this snippet of the subgraph, many vertices originally have
neighbors on adjacent layers that are out of the routing region
now. They have thus only two neighbors left on the track. In
this way, as long as such a vertex does not belong to a pin, it
can be safely removed with the two connected edges merging
into one. This compressing step cuts down the problem size
without affecting the final results. Both memory usage and
runtime can be reduced.

3) Wrong-Way Edge: Wrong-way edges are discouraged
due to three reasons. First, more regular designs with fewer
wrong-way usage is beneficial to manufacturability [15]. Sec-
ond, a long wrong way edge will block many tracks, which
hurts routabiltiy. Third, for routing a single net, heavy usage of
wrong-way edges leads to a significantly larger solution space
and thus runtime overhead.

But it should be allowed. In the preliminary version [1]
of this work, we only try using wrong-way edges in some
post processing steps. However, it turns out that adding some
wrong-way edges in the local grid graph can greatly benefit
escaping congested tracks. In our implementation, we add
wrong-way edges densely in the small regions around pins.
Besides, along two neighboring tracks, a wrong way edge is
added for every ten vertices. Since we store wires as intervals
along tracks in the global grid graph, a wrong-way wire
will be segmented and stored as degenerated intervals (i.e.,
points) on the tracks that it spans. This storage scheme is still
efficient in general because wrong-way usage is the minority.
The improvement due to the wrong-way consideration will be
shown in Section VI.

4) Explicit Storage: In the global grid graph, vertices are
implied by 3D indexes but are not instantiated. To support
efficient vertex-wise operation in maze routing (e.g., recording
the prefix and cost, propagating to neighbors), the local graph
instantiates all its vertices and edges. To be more specific,
vertices are assigned with continuous indexes staring from
zero, and adjacency lists are also created. In this way, any
vertex/edge information can be efficiently stored and retrieved

by direct-address tables (instead of hash tables or BSTs).

IV. ROUTING ALGORITHM

In routing (especially detailed routing), sequential maze
routing is widely adopted due to its scalability (compared with
concurrent methods like [8], [24]) and flexibility (for capturing
various objectives and violations). Recall from Fig. 3 that our
local grid graph is sparse because of the routing guide and long
edges, which enhances the efficiency of our maze routing. We
follow the convention of sequential maze routing. Essentially,
nets are routed one after another, where previously routed nets
are treated as blockages. After routing all nets with possible
violations, several rounds of rip-up and reroute (RRR) help to
clean them up.

A. Edge Cost in Local Grid Graph

The cost w(e) of each edge e in the local grid graph
G(V,E,w) is a weighted sum of
• Basic wire cost (by length),
• Basic via cost (by count),
• Out-of-guide penalty, and
• Short/spacing violation penalty.

In this way, a path search (like Dijkstra’s algorithm [25]) run-
ning on the grid graph will optimize these objectives automat-
ically. The basic via/wire cost together with the short/spacing
violation penalties are queried from the sparse global grid
graph in batch. The out-of-guide penalty is charged according
to the routing guide after the query.

Note that it is not determined by a single edge whether
the minimum-area rule is violated or not. The minimum-area
violation thus cannot be reflected as expensive edges like
short/spacing violations and can only be captured by the path
search algorithm.

B. Minimum-Area-Captured Path Search

For wires with a specific width, a minimum area implies
a minimum-length constraint lmin. A straight-forward idea
for fixing the violation after maze routing is to extend the
wire segments that are not long enough. Such a greedy
method may suffer from excessive wire length (e.g., Fig. (b)
compared with Fig. (c)) and even insufficient spare space
for extension. Another method, multi-label path search [12],
forces the minimum length for every wire segment without
considering the possibility of extension. In this way, significant
but unnecessary detour may be paid (Fig. (d)). By capturing
the minimum-area violation and its possible fixing during the
path search, a better solution can be obtained (Fig. (e)).

We extend the conventional Dijkstra’s algorithm [25] to
comprehensively handle the minimum-area rule. In Dijkstra’s
algorithm, the cost/distance of a path can be directly incre-
mented. That is, the cost of a path from vertex v1 via v2 to
v3 is simply the sum of the cost of the two partial paths:

cost(v1  v2  v3) = cost(v1  v2) + cost(v2  v3).

The challenge for considering the minimum area constraint is
an uncertain cost of a partial path, which is unknown until
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Fig. 7: Capture minimum area cost in path search. Suppose the
minimum area implies a length of three pitches. A path from
source S to sink T is needed. (a) A normal path search without
considering minimum-area violation. (b) Post fixing by extending
wire. (c) Forcing the minimum length of wire segment in path search.
(d) Detour due to the forcing. (e) Path search with wire extension
considered.

the path turns or stops. At vertex v2, it is unknown whether
a minimum-area overhead (either wire extension or violation
penalty) is needed, which depends on the future propagation
of the path. However, for a path up to a certain wire segment,
bounds on its cost can be calculated as follows.
• Lower bound cost: sum of edge costs plus the minimum-

area overhead on all the previous wire segments.
• Upper bound cost: lower bound cost plus the potential

minimum-area overhead on the current wire segment.
Our path search is detailed by Algorithm 1. The process is

still based on a priority queue Q, but the operation domain is
generalized from vertices to paths, because each vertex may
have several candidate paths now. The information stored for
a partial path P ′ includes:
• Prefix path P ′.prefix and current vertex P ′.vertex. Note

that such incremental storage requires O(1) memory only
for each propagated path, instead of O(|P ′|) with |P ′|
being the number of vertices in P ′.

• The lower bound P ′.costLB and upper bound
P ′.costUB of the path cost.

• Length of the current wire segment P ′.length. It is
needed for calculating the minimum-area overhead.

The information stored at each vertex v is the smallest upper
bound cost v.costUB among all the paths reaching it.

In each iteration, the path P ′ with the smallest lower bound
cost in the priority queue Q is popped out (line 6). It will be
considered for propagating to the neighbors of P ′.vertex. For
an extended path P ′′ to a neighbor v ∈ P ′.vertex.neighbors,
satisfying P ′′.costLB < v.costUB means that P ′′ is a
potentially optimal path and should be considered for further
propagation (line 25). If P ′′.costLB ≥ v.costUB, P ′′ can
be pruned. The algorithm stops when a sink vertex is reached
(line 7). Note that for a sink vertex, the pin metal is sufficiently
large and thus can guarantee that P ′.costLB is achievable
(i.e., no minimum-area overhead charged).

Algorithm 1 Optimal Minimum-Area-Captured Path Search

Require: A local grid graph G(V,E,w), source and sink vertices
s and t, minimum length lmin of wire segment (implied by the
minimum-area constraint).

Ensure: s− t path P .
1: Q← an empty priority queue for storing paths
2: v.costUB ←∞, ∀v ∈ V
3: Initialize path P ′ at s (P ′.prefix ← null, P ′.vertex ← s,

P ′.costLB ← 0, P ′.costUB ← 0, P ′.length← lmin)
4: Push P ′ into Q
5: while Q is not empty do
6: Pop the path P ′ with smallest P ′.costLB from Q
7: if P ′.vertex = t then
8: return P ′

9: end if
10: for v ∈ P ′.vertex.neighbors do
11: RELAX(P ′, v)
12: end for
13: end while

14: function RELAX(P ′, v) . Extend path P ′ to v
15: P ′′.prefix← P ′

16: P ′′.vertex← v
17: if P ′.vertex.layer 6= v.layer then
18: P ′′.costLB ← P ′.costUB + w(P ′.vertex, v)
19: P ′′.length← 0
20: else
21: P ′′.costLB ← P ′.costLB + w(P ′.vertex, v)
22: P ′′.length← P ′.length+ dist(P ′.vertex, v)
23: end if
24: P ′′.costUB ← P ′′.costLB+

MINAREAOVERHEAD(P ′′.length, v.hasSpace)
25: if P ′′.costLB < v.costUB then
26: Push P ′′ into Q
27: if P ′′.costUB < v.costUB then
28: v.costUB ← P ′′.costUB
29: end if
30: end if
31: end function

The overhead due to the minimum-area rule depends on the
length of the current wire segment P ′′.length, whether vertex
v has sufficient spare space for wire extension (v.hasSpace),
and the minimum length requirement lmin (line 24). To be
more specific,

MINAREAOVERHEAD(P ′′.length, v.hasSpace) =
0, if P ′′.length ≥ lmin,

wwire · (lmin − P ′′.length), if P ′′.length < lmin and v.hasSpace,

wminArea, otherwise,

where wwire is the unit-length basic cost for wires, and
wminArea is the penalty for each minimum-area violation.
Note that the flag v.hasSpace for all the vertices in the local
grid graph can be queried from the global grid graph in batch.
The flags are then stored explicitly in the direct-address table
mentioned in Section III-C4.

Theorem 1 states the optimality of Algorithm 1. The proof is
similar to that of the original Dijkstra’s Algorithm (see [26]).

Theorem 1. For a given local grid graph G(V,E,w), Algo-
rithm 1 gives an optimal s− t path P satisfying the minimum
length constraint lmin.
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The path search algorithm in MANA [11] also captures
the minimum length constraint in a similar manner. The
strengths of our approach over MANA are two folds. First, our
framework allows minimum-area violations to exist in earlier
RRR iterations. The minimum-area penalty serves as Lagrange
multiplier [4] and helps to build a smooth RRR optimization
process. It avoids satisfying minimum-area constraint at a huge
price of sacrificing other metrics (e.g., wire length) in early
iterations but still leads to almost zero minimum-area violation
eventually. Second, we query the flag v.hasSpace in batch
from our global grid graph, which is more efficient.

For a multiple-pin net, path search starts from a source pin s.
When reaching the first other pin, all vertices on the path are
regarded as source for searching a next pin, until all pins are
reached [27].

C. Rip-up and Reroute

One round of sequential maze routing usually cannot gener-
ate a violation-free solution for all the nets. Several rounds of
rip-up and reroute (RRR) help to iteratively reduce the number
of violations. Our RRR strategy is similar to those widely
used in global routing (e.g., NCTU-GR [10]) with two major
differences. First, only nets with violations are ripped up to
save runtime, considering that detailed routing is more time-
consuming. Second, for ripped-up nets, their routing regions
will be slightly expanded for attempting a larger solution space
in the next iteration.

For the wires and vias with design rule violations in
previous RRR iterations, a history cost is recorded. Note that
for a wire segment with violations, history cost is charged only
for the intervals with violations on it. In this way, the actual
situation of resource competition can be reflected. Regarding
the value of history cost, it is discounted compared with the
design rule violations showing in the current iteration because
current violations are definite. Besides, there is a fading factor
so that history violations more iterations ago will have less
impact. Such a negotiation-based RRR results in a better and
faster convergence, as Section VI will show.

V. PARALLELISM

Detailed routing is time-consuming in general. There are
many jobs during the whole process that can be easily paral-
lelized. For example, the initialization of conflicted wires and
vias in the global grid graph can be conducted in parallel for
different layers and different regions of a chip. However, the
major runtime bottleneck of Dr. CU is to construct the local
grid graph, run maze routing, and update the global grid graph
for each net.

The turn-around time of detailed routing can be further
shortened by routing different nets in parallel. The challenge
here is that the routing regions of different nets may overlap.
We design an efficient bulk synchronous parallel scheme
[28]. It routes batches of independent nets one after another.
Note that such independence, together with a deterministic
scheduling of batches, can ensure deterministic routing results.

For nets in the same batch, their routing regions do not over-
lap. Here a safety margin is also considered, which captures

Algorithm 2 Scheduling for Parallel Routing
Require: Nets
Ensure: batchList

1: Sort all nets in decreasing size of routing region
2: batchList← ∅
3: for each net ni do
4: for each batch bj in batchList do
5: if ni has no conflict with bj then . By R-trees
6: Add ni into bj
7: Break
8: end if
9: end for

10: if ni has not been assigned to any batch then
11: Append a single-net batch with ni to batchList
12: end if
13: end for
14: Reverse the order of batches in batchList
15: for each batch bj in batchList do
16: Sort nets in bj by decreasing size of routing region
17: end for

spacing rules and possible wire extension for minimum-area
compliance. There are two phases for each batch. The routing
phase queries nets from the global grid graph, constructs the
local grid graphs, and runs maze routing; the committing phase
records routed edges into the global grid graph (see Fig. 3),
which can be regarded as a data synchronization needed by
later batches. The parallelism for the independent jobs in either
the routing or committing phase is trivial: each thread keeps
consuming a net from a pool of unprocessed nets until the pool
becomes empty. With runtime dominated by the routing phase,
the reason for having a separate committing phase is to avoid a
heavy usage of mutual exclusion (mutex) [29] among threads.
Routed edges in the global grid graph are stored by BSTs. A
BST cannot be accessed when it is being modified by another
thread, even if the ranges of access and modification do not
overlap. One solution is to set up locks. Its drawback is that
reading BSTs is significantly more frequent than writing. Note
that for a net, reading BSTs is performed on its routing region,
while writing is only performed for the solution paths, which
comprises just a small part of the whole routing region. By
separating the committing phase, the BST read in the routing
phase becomes lock-free and thus can be performed faster.

A scheduling of all the batches will be performed in the
beginning of an RRR iteration by Algorithm 2. Nets are
assigned one after another by trying to join an existing batch
(lines 4–9) and thus minimizing the number of batches. R-trees
are used to detect the conflict between a net and a candidate
batch. For a batch of nets, there are several R-trees storing their
rectangular routing regions, one for each layer. In this way, the
scheduling is very efficient and empirically only takes 1.02–
2.07% of the total running time. Fig. 8(a) shows the runtime
profile of all the batches on a test case. Note that in a batch,
different threads may finish their last jobs at different time
and thus have various durations. The maximum duration of all
the threads is the time that a batch needs, while the average
duration is the runtime lower bound that can be achieved by
an ideal scheduling. Their small difference shown in Fig. 8
justifies the good quality of our scheduling.

Moreover, we apply three techniques to further improve the
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effectiveness of scheduling. The first two techniques are to
enhance the load balancing.
• Within-batch balancing (WBB, Algorithm 2 lines 15–17).

The workload of different threads in a batch can be more
balanced by processing larger nets first. The improvement
is evidenced by the smaller gaps between the maximum
and the average durations of each batch in Fig. 8(b).

• Inter-batch balancing (IBB, line 1). Attempting larger
nets first during the scheduling can improve the paral-
lelism, as Fig. 8(c) shows. The benefits are in three folds.
First, larger nets are more likely to have overlap with the
existing nets in a candidate batch. Therefore, IBB can
help to reduce the number of batches by increasing the
success rate of larger nets (e.g., reduced from 123 to 96
for the first RRR iteration on ispd18_test9). Second,
our scheduling algorithm tends to make later batches with
fewer nets and thus worse load balancing among threads.
IBB remedies the problem by making later batches have
fewer nets and by making nets in later batches smaller.
Third, some nets may be very huge and need a long time
to be routed. If the other nets in its batch do not take a
sufficiently long time in total, there will be a single thread
routing the huge net with other threads idle (seen by the
long “pulse” in Fig. 8(b)). IBB can gives more load to
the batch of huge nets (usually the first several batches)
and avoid such an issue.

The third technique is batch with small nets first (BSF,
line 14). IBB also lets large nets be routed earlier. The problem
is that small nets are less flexible in maze routing than large
nets due to their smaller solution space. Routing large nets
first makes later small nets even more difficult to be routed.
BSF reverses the order of all batches and avoids the problem.
In terms of runtime, it leads to fewer nets with violations in a
RRR iteration, reroutes fewer nets in the next RRR iteration,
and thus saves the runtime, which can be seen from Fig. 8(d).

The eventual runtime benefits of the three techniques will
be shown in Section VI.

VI. EXPERIMENTAL RESULTS

Dr. CU is implemented in C++ with the boost geome-
try library [30] for R-tree query and Rsyn [31] as parser.
Experiments are performed on a 64-bit Linux workstation
with Intel Xeon Silver 4114 CPU (2.20GHz, 40 cores) and
256GB memory. Benchmarks are from the ISPD 2018 Initial
Detailed Routing Contest [3]. The metric weights for the total
quality score and the benchmark characteristics are shown by
TABLE II and TABLE III respectively. Consistent with the
contest, eight threads are used by default. The result reporting
is conducted by Cadence Innovus 17.1 [32] and the official
evaluation script [33].

The result statistics of Dr. CU is illustrated by TA-
BLE IV. Fig. 9 shows a GUI view of the solution on
ispd18_test10.

A. Effectiveness of Quality Enhancement

Fig. 10 shows the score breakdown of Dr. CU on
ispd18_test9 and ispd18_test10 across the four

TABLE II: Metric Weights in ISPD 2018 Contest Benchmarks
Metric Weight

Basic cost wire length 0.5
# vias 2

Non-
preferred

usage

out-of-guide wire length 1
# out-of-guide vias 1

off-track wire length 0.5
# off-track vias 1

wrong-way wire length 1
Design

rule
violations

short metal area 500
# spacing violations 500
# min-area violations 500

RRR iterations. The score is calculated under the metric
of ISPD 2018 Contest and divided into three categories –
basic cost, non-preferred usage, and design rule violations.
During the RRR process, even though the non-preferred usage
(especially out-of-guide wire length) may slightly increase,
the design rule violations can be significantly reduced. This
demonstrates the effectiveness of our RRR scheme. We set
the number of RRR iterations to four for all the ten cases as a
proper trade-off between quality and runtime. A fifth iteration
can improve the total quality score by 0.5% but needs 31%
more runtime on average.

Fig. 11 shows the enhancement due to three other tech-
niques. First, adding some wrong-way edges in the local grid
graph (Section III-C3) helps to enlarge the solution space and
thus alleviate the congestion problem, which brings 1.6%–
38.6% score improvement with the average being 7.7%. Sec-
ond, the minimum-area-captured path search (Section IV-B)
provides more correct-by-construction design rule satisfaction.
To be more specific, it reduces the number of minimum
area violations by up to 100% and on average 82.6%. The
total score is therefore improved by up to 2.6% and on
average 0.9%. Third, using history cost in RRR (Section IV-C)
improves the quality score by up to 2.0% and on average 1.0%
eventually. Meanwhile, it also results in a faster convergence,
reducing the total runtime by 6.8% on average.

B. Effectiveness of Runtime Reduction

Fig. 12 shows the speed-up due to pre-computing via-
obstacle and via-pin conflicts. Here, the turn-around time of
the whole detailed routing process is saved by 32.2%–62.8%,
which is 49.9% on average.

The acceleration achieved by our parallelism is shown
in Fig. 13. Eight threads give around five to six times
speed-up compared with single-thread routing. Here, within-
batch balancing (WBB), inter-batch balancing (IBB), and
batch with small nets first (BSF) contribute 3.63%, 9.20%,
and 6.65% improvement on average respectively. In total,
“WBB+IBB+BSF” saves runtime by 13.9%–32.2% (on av-
erage 18.5%).

Fig. 14 shows the runtime breakdown of Dr. CU on
ispd18_test10. Before routing, the global grid graph
and conflict LUTs are initialized, which takes 4.9% of the
total runtime. We define the process of caching (including
querying the global grid graph and constructing local grid
graphs) and maze routing as core routing, which is the major



0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2927542, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

0 50 100 150 200 250 300 350 400
Batch

0

5

10

15

D
ur

at
io

n 
(s

)

RRR iteration 1 RRR iteration 2 RRR iteration 3 RRR iteration 4

max. duration
avg. duration
# nets

0

5000

10000

15000

20000

#
 n

et
s

(a) None (routing phase 937s)
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(c) WBB + IBB (routing phase 827s)
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(d) WBB + IBB + BSF (routing phase 749s)

Fig. 8: Better parallelism by within-batch balancing (WBB), inter-batch balancing (IBB), and batch with small nets first (BSF). The result
is on ispd18_test9 and across four RRR iterations.

Fig. 9: Solution of Dr. CU on ispd18_test10.

consumer of runtime (38.4%+37.3%+3.7% = 79.4%). In each
RRR iteration, core routing is performed under our bulk syn-
chronous parallel scheme, where there is a parallel loss3. The
miscellaneous jobs for routing including the committing phase
mentioned in Section V, ripping up violated nets, updating
history cost, etc. They take 12.9%. After routing, we write the
routing solution to the output file.

3We divide the total CPU time for caching by the number of threads to get
the equivalent wall time for caching. Similarly, there is the equivalent wall
time for maze routing. The parallel loss of core routing is therefore the real
wall time of while core routing process minus the equivalent wall time for
caching and maze routing.



0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2927542, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

CHEN et al.: DR. CU: DETAILED ROUTING BY SPARSE GRID GRAPH AND MINIMUM-AREA-CAPTURED PATH SEARCH 11

TABLE III: ISPD 2018 Contest Benchmark Characteristics

Benchmark # std.
cells

# block
macros # nets # pins # IO

pins # layers M2
# tracks

M2
pitch (µm)

Die size
(mm2)

Tech. node
(nm)

test1 8879 0 3153 17203 0 9 977 0.2 0.20×0.19 45
test2 35913 0 36834 159201 1211 9 3254 0.2 0.65×0.57 45
test3 35973 4 36700 159703 1211 9 4943 0.2 0.99×0.70 45
test4 72094 0 72401 318245 1211 9 8886 0.1 0.89×0.61 32
test5 71954 0 72394 318195 1211 9 9800 0.1 0.93×0.92 32
test6 107919 0 107701 475541 1211 9 5312 0.1 0.86×0.53 32
test7 179865 16 179863 793289 1211 9 13500 0.1 1.36×1.33 32
test8 191987 16 179863 793289 1211 9 13500 0.1 1.36×1.33 32
test9 192911 0 178857 791761 1211 9 13500 0.1 0.91×0.78 32
test10 290386 0 182000 811761 1211 9 13500 0.1 0.91×0.87 32
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Fig. 10: Improving routing quality by RRR.
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Fig. 11: Improving routing quality by using wrong-way edges,
minimum-area-captured path search, and history cost.

C. Comparison with State-of-the-Art Detailed Routers

We also compare Dr. CU with TritonRoute [21], the
work [22], and the first place in ISPD 2018 Contest (TA-
BLE IV). For all the detailed routers, We run the binaries
provided by the authors on our machine with eight threads.
Besides the ISPD 2018 Contest metric, we also report the
number of short violations. This is to avoid the misleading
due to the abusing of the contest metric. In the design rule
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w/o pre-compute
w/ pre-compute

Fig. 12: Speed-up by pre-computing via-obstacle and via-pin con-
flicts.
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Runtime (s)
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8 threads w/ WBB
8 threads w/ WBB+IBB
8 threads w/ WBB+IBB+BSF

Fig. 13: Speed-up by parallelism.

verification of Innovus, a spacing violation (e.g., Fig. 15(a))
can be removed by inserting a metal patch between the two
violating objects (e.g., Fig. 15(b)). The patch generates a short
violation with zero area, which improves the score under the
contest metric but is not beneficial to the real design need.

Regarding the routing quality, Dr. CU shows significantly
better scores in many aspects (including wire length, via count,
out-of-guide usage, off-track usage, and design rule violations)
in most cases. According to the metric of ISPD 2018 Contest,
our routing quality wins all the other state-of-the-art detailed
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TABLE IV: Comparison with State-of-the-Art Academic Detailed Routers on ISPD 2018 Contest Benchmarks
Basic cost Non-preferred usage Design rule violations ISPD’18

quality
score

Mem
(GB)

Time
(s)WLa # vias Out-of-guide Off-track Wrong-way

WLa # short Short
areaa

# min
area

#
spacing

Total
#WLa # vias WLa # vias

D
r .

C
U

test1 433254 32031 1706 446 393 0 4749 4 0.4 0 17 21 296504 0.33 11
test2 7806294 317160 34194 5948 4937 0 44495 12 1.3 0 73 85 4661740 1.70 85
test3 8683731 307545 52408 5499 5714 0 45541 346 372.5 0 161 507 5330014 1.75 113
test4 26033480 658644 132938 16103 9190 0 59579 463 436.8 6 1071 1540 15304156 3.94 320
test5 27729394 916715 92872 16686 1588 0 44680 406 77.4 10 496 912 16144832 5.42 426
test6 35595790 1403634 142595 25939 8735 0 69829 168 92.7 21 587 776 21198243 6.48 527
test7 64994186 2271738 235497 36269 16459 0 106884 772 230.8 38 325 1135 37724327 10.77 969
test8 65289434 2281513 290418 38596 17082 0 111173 861 249.5 20 399 1280 37990696 11.73 1034
test9 54602832 2282226 284645 42078 12746 0 108324 297 162.7 28 379 704 32592136 11.20 906
test10 67907614 2439531 1137257 64535 30527 0 197840 14605 11370.4 44 3910 18559 47909940 11.95 1299

Avg. ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

[1
]

test1 434914 34443 4352 859 276 0 2363 127 15.3 0 122 249 362725 0.33 22
test2 7817285 339055 104720 11784 4353 0 22023 1005 1329.9 0 1949 2954 6366885 1.48 114
test3 8707641 331958 176736 10731 4344 0 22187 2444 1982.1 0 2419 4863 7430091 1.57 128
test4 26042785 701994 769265 31444 41791 0 89537 6914 26328.8 0 11224 18138 34112927 3.50 443
test5 27852167 942588 649224 43071 13390 0 63397 5466 4722.2 0 7742 13208 22805759 4.48 692
test6 35813473 1446807 976672 68656 20357 0 95811 7959 12891.0 0 11023 18982 33908650 6.35 1054
test7 65360688 2349580 2187794 101866 33105 0 170316 23141 33040.9 0 14880 38021 63816461 10.54 1848
test8 65668468 2360231 2288159 102982 33373 0 170583 20641 22352.8 0 14384 35025 58501486 10.62 1867
test9 54993356 2358857 1604576 115465 29620 0 168722 18830 17315.6 0 14470 33300 50010786 10.43 1804
test10 68282001 2532666 2826908 140343 32865 0 180586 26688 150704.9 0 20837 47525 128141528 11.10 1909

Avg. ratio 1.00 1.05 5.39 2.34 2.50 - 1.14 31.75 165.37 0.00 21.91 21.76 1.67 0.92 1.66

[2
1]

test1 464503 39199 5659 1301 64 114 17 4364 1.1 0 120 4484 378304 4.43 101
test2 8097032 385111 63976 12746 2474 1241 172 29845 36.3 1 1419 31265 5626235 29.19 897
test3 9013950 389718 42336 691 19905 1117 205 34753 1507.2 0 1755 36508 6971806 38.45 1395
test4 27165618 847643 267804 50040 180535 1675 1016 42024 17088.6 54 3130 45208 25825193 52.44 6164
test5 29206112 1142635 278618 54613 20047 9905 1174 145826 1795.2 118 7438 153382 21918275 34.75 2317
test6 37905264 1768984 408860 80328 31165 16368 2765 152194 1937.0 188 11630 164012 29892011 35.89 3807
test7 68655629 2866477 677287 131394 93328 23387 4378 243375 9187.7 270 12896 256541 52120721 44.53 6561
test8 68988139 2879647 696911 135073 88394 23598 4506 238519 8386.2 240 12744 251503 51842741 44.98 6136
test9 58255989 2872574 620805 127167 51854 23438 4449 264230 2531.7 260 12581 277071 43361290 45.04 5737
test10 71637851 3055779 957064 138008 232529 27502 5610 340647 12162.8 259 16164 357070 57467840 47.21 12614

Avg. ratio 1.05 1.25 2.22 2.69 6.25 - 0.02 653.96 20.71 9.15 18.41 189.76 1.35 9.39 9.25

[2
2]

b

test1 487842 42565 1107 502 167 0 1724 95 4.4 0 773 868 721170 0.29 67
test2 8322145 403543 34068 5689 2783 0 17897 1218 172.0 0 6803 8021 8514694 1.93 1680
test3 9212616 398144 16211 5987 1920 0 16672 3919 1365.2 0 8477 12396 10363523 2.09 2194
test4 27699631 822662 56624 28601 4369 0 56093 5969 8273.2 126 45661 51756 42668733 4.78 7201
test5 29493060 1072812 130131 13385 15748 0 107889 7037 7681.5 37 96575 103649 69298177 5.46 10017
test6 38123660 1641879 190819 21811 30645 0 183006 10375 12213.7 48 113048 123471 85411399 7.75 16345
test7 69033346 2656802 453807 39365 52255 0 302204 19802 20961.3 108 179190 199100 140781447 13.11 51768
test8 69039670 2621050 468925 39302 53192 0 307267 20944 22601.7 103 182494 203541 143203359 13.53 51328
test9 58299612 2621857 336589 39504 46044 0 301241 19246 17949.0 74 185270 204590 136740361 13.39 45024
test10 71636304 2791064 523896 47663 60925 0 358457 35218 221528.4 55 218478 253751 262391463 14.21 71552

Avg. ratio 1.07 1.21 1.03 1.04 2.71 - 1.73 34.57 70.45 5.55 217.47 110.52 3.45 1.14 33.00

1s
t

pl
ac

e
of

IS
PD

20
18

test1 472032 41641 6246 1385 3528 116 3509 4223 0.7 0 107 4330 386190 5.66 100
test2 8150588 409551 71685 13451 20402 1362 18214 36601 94.9 1 1158 37760 5636272 29.91 831
test3 9086139 427410 69182 2450 33470 1216 18882 46966 4891.4 0 1387 48353 8645535 41.44 1408
test4 27514053 858224 240226 8841 150961 1011 224715 349597 52947.1 6 50957 400560 67978775 43.93 4374
test5 29415618 1158945 342675 31391 46870 10514 194054 431909 28428.7 28 66742 498679 65227110 23.02 1794
test6 38191983 1800286 471017 42714 151178 17549 281027 628776 31227.5 15 100196 728987 89303688 28.36 2969
test7 fail fail fail fail fail fail fail fail fail fail fail fail fail fail fail
test8 69559382 2929578 1006247 82478 375236 22294 455824 1058138 76790.0 48 161229 1219415 161426825 40.78 5030
test9 58803453 2920259 813750 67367 331766 22915 446432 1051112 56580.8 40 158305 1209457 144221468 40.16 4481
test10 72244024 3110163 1414338 81831 625291 27392 476670 1289359 120966.0 33 177426 1466818 193867712 43.42 5271

Avg. ratio 1.06 1.30 2.61 1.66 16.74 - 2.70 1628.84 175.34 1.52 138.97 582.42 3.28 9.90 7.60
a Unit of length is M2 pitch; unit of area is the square of M2 pitch.
b Two versions, with and without spacing-to-short conversion, are reported in [22]. The version without spacing-to-short conversion is shown here because it is more

practically meaningful.
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Fig. 14: Runtime breakdown on ispd18_test10.
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Fig. 15: Spacing-to-short conversion done by some other detailed
routers. (a) A spacing violation between a wire segment and an
obstacle. (b) A metal patch that converts the spacing violation to
a short violation with zero area.
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Fig. 16: Comparison with state-of-the-art detailed routers on quality
score under the metric of ISPD 2018 Contest.
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Fig. 17: Comparison with state-of-the-art detailed routers on total
number of design rule violations.

routers in all test cases, as Fig. 16 summarizes. Compared
with the second best [21], the score is improved by 16.6%–
40.7%. Regarding the number of design rule violations, our
strength is even more obvious (better by one or two orders
of magnitude), as Fig. 17 shows. Compared with the second
best [22], the number is reduced by 92.7%–99.7%. At the
same time, the runtime of Dr. CU is also tremendously better
(Fig. 18). To be more specific, there is 9.2×, 33× and 7.6×
speed-up on average compared with [21], [22] and the first
place respectively.
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Fig. 18: Comparison with state-of-the-art detailed routers on runtime.

VII. CONCLUSION

In this paper, we propose Dr. CU, an efficient and effective
detailed router, to tackle the challenges in detailed routing.
A set of two-level sparse data structures is designed for the
routing grid graph of enormous size. An optimal path search
algorithm is proposed to handle the minimum-area constraint.
Besides, an efficient bulk synchronous parallel scheme is
adopted to further reduce the runtime usage. Compared with
state-of-the-art detailed routers, Dr. CU shows superior routing
quality, runtime, and memory usage.
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